### Calibration for GEMS Data, Concepts and Issues

Myoung-Hwan (MH) AHN & Mina Kang

Department of Atmospheric Science and Engineering Ewha Womans University



4<sup>th</sup> GEMS Science Meeting (2013.10.14~10.16.)

#### Data quality of the GEMS

Radiometric calibration and issues

INR and Issues



## I. Data quality

#### Determined by three important processes

#### – Spectral Calibration

- Assignment of wavelength value to each CCD pixel (the 1<sup>st</sup> order spectral calibration will be prepared by instrument manufacturer)
- For a better accuracy, additional steps could be taken
- Radiometric Calibration
  - Convert the downlinked digital number to physical parameter (here, either radiance or irradiance)
  - Need comprehensive ground test and onboard operations for the confirmation or re-characterization
- Geometric Calibration
  - Assignment of geo-location information to each CCD pixel and corresponding observation angles (solar/satellite zenith angle, ....)
  - Dependent not only on instrument characterizations, but also on the spacecraft and ground processing
  - Need early test for the landmark performance with the reduced spatial resolution data

#### Signal chain equation



 Then, the digital number received at the ground is determined by;

$$DN = C \times \left\{ G\left[ \int_{\nu_1}^{\nu_2} I(\nu) T(\nu) \frac{D^2 A}{f l^2} R(\nu) d\nu + \varepsilon_0 \right] + \varepsilon_e \right\}$$
(1)

here,

DN: digital number, C: conversion constant, G: amplification gain, I(v): input radiance, T(v): optical transmittance D: Aperture diameter, A: detector area, fl: focal length R(v): detector spectral responsivity v: wavenumber,  $\varepsilon_o$ : opitcal error,  $\varepsilon_e$ : electronic error

#### ◆ Calibration equation

– Chain equation can be inverted to give a band-averaged input radiance  $(\overline{I})$  value such as;

$$\bar{I} = \frac{1}{G'C} \frac{1}{\int_{v_1}^{v_2} T(v) R(v) dv} \{DN - C\varepsilon_e - CG\varepsilon_o\}$$

$$= \frac{k}{\tau} DN' \qquad (2)$$
where
$$k = \frac{1}{G'C},$$

$$\tau = \int_{v_1}^{v_2} T(v) R(v) dv,$$

$$DN' = DN - C\varepsilon_e - CG\varepsilon_e$$

– Here, k is ground determined and time invariant, while R(v) weighted T(v) (or called throughput) and error terms ( $\varepsilon_e \& \varepsilon_o$ ) are all time dependent

#### ◆ Calibration equation

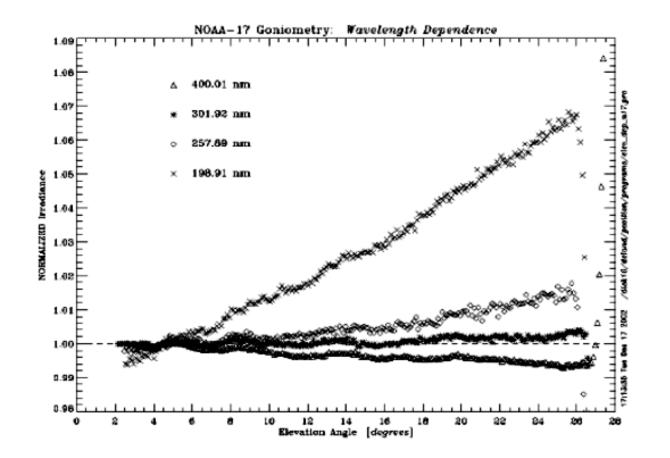
- As the throughput degrades/varies with time, the normalized radiance (w.r.t to the simultaneous solar irradiance value) has long been used
- Similar to the radiance calibration equation, irradiance calibration equation can be denoted as;

$$F = \frac{k_s}{\tau} D N_s' \frac{1}{g \widetilde{T}}$$

- Here, g is the goniometry (angular response to the solar radiation, and  $\tilde{T}$  is the transmissivity of the transmissive diffuser used for irradiance observation
- Then, the normalized radiance becomes

$$\frac{I}{F} = \frac{k}{k_s} \frac{DN'}{DN_{s'}} g\tilde{T}$$
(3)

◆ Key issues with the radiometric calibration


$$\frac{I}{F} = \frac{k}{k_s} \frac{DN'}{DN_{s'}} g\tilde{T}$$
(3)

- Acquiring accurate ground measured calibration parameters (calibration constants, goniometry, non-linearity, CCD alignment characteristics, baseline solar irradiance, etc.)
- Characterization of noise counts for both optics and electronics from the on-orbit observation data
- Any degradation of the goniometry parameter with time?
- How can we best utilize the frequent observation of solar radiation (proposed for twice a day)
- Do we need additional normalization to control PRNU within a certain threshold value?

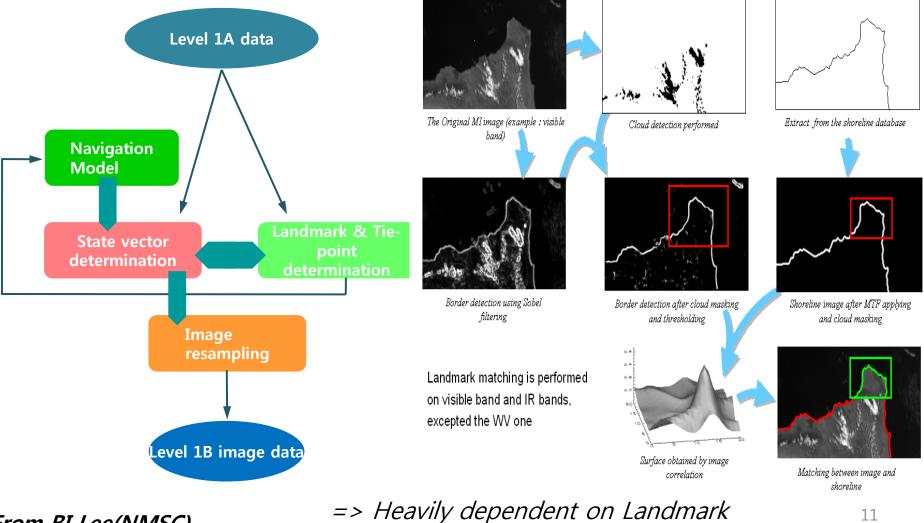
#### ◆ Solar radiation for absolute calibration

- Use transmissive diffuser to measure solar irradiance twice a day
  - Are the measured solar irradiance going to be used for the derivation of the normalized radiance?
  - What time are we going to measure the solar irradiance?
  - Does GEMS have enough FOR to have 0.53 degree solid angle sun without satellite tilting?
  - How are these frequent solar irradiance data going to be used?
- Then, how often the reference diffuser should be used?
- Are we going to use the reference and working diffuser with the similar concept applied for the OMPS nadir spectrometer?
- How accurately can we measure the goniometry parameter at the ground testing? Can IOT tests provide better information?

◆ Goniometry effect

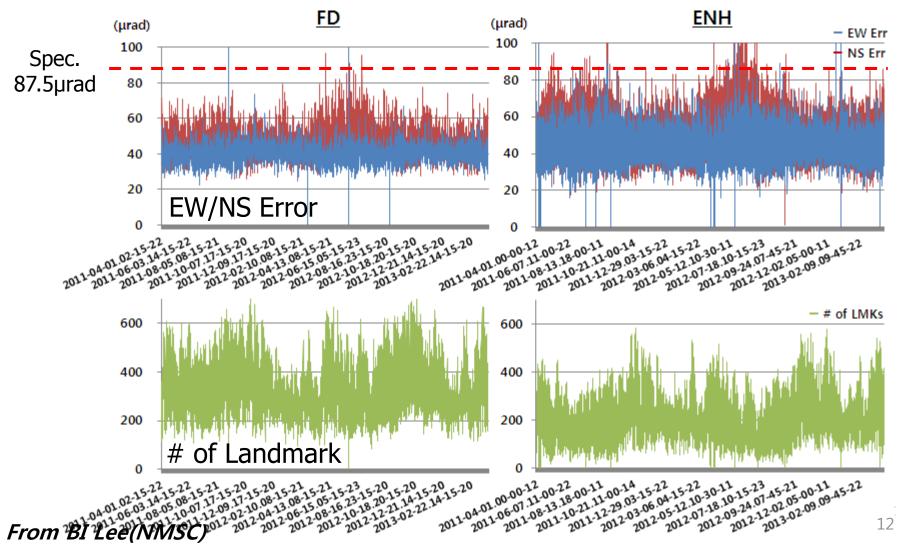


L. Flynn et al, (2011)


How accurately can we correct the background noise

- Are we going to have a tool to correct the stray light effect in the measured radiance?
  - Will depend on the wavelength and scene type. How are we going to implement laboratory obtained information to the real data?
- Striping caused by the PRNU and other reasons are observed quite often. What kind of protective measures do we have/expect to have or do we anticipate?
- How exactly are we going to measure the LED signal and use the signal for the calibration (linearity trending)?
- Smearing effect would depend on the observation environment. What kind of correction measures are we going to have?

### **III. INR and Issues**


COMS INR

From BI Lee(NMSC)



#### III. INR and Issues





### **III. INR and Issues**

#### ◆ GEMS Issues with INR

- Slow scan rate with relatively small FOR
  - Reduces available number of good landmarks within the FOR
  - Require more uniformly distributed good landmarks and better ranging information
- Spatial resolution
  - Increased possibility of cloud contaminated pixel which could decrease available number of landmark.
  - Lower spatial resolution means a larger landmark size (to have same number of coastal pixel number) resulting decreased number of landmark
- Limited number of observation
  - The first scene without recent state vector information (such as the first scene of a day, or, after spacecraft maneuvering such as station keeping and wheel-off loading)
  - Limited portion of spectral data will be used for Landmark extraction, which may introduce spectral mis-alignment

## IV. Summary

- Many aspects are new for the geostationary platform
- ◆ Interesting and exciting activities are ahead
- ◆ Need closer cooperation
  - Image quality is the most important for the better utilization of GEMS data
  - It is determined by at least three important calibration activities, Geometric, Spectral, and Radiometric.
  - All of these calibration require a closer collaboration of all stakeholder including user, sensor/spacecraft engineer, ground processing and scientific algorithm developer

# Thank you