Intercomparison of total column ozone from Pandora over Seoul, Korea

Sang Seo Park (Seoul National University) Jhoon Kim, Jiyoung Kim, and Hana Lee (Yonsei University)

Introduction

- The Pandora spectrophotometer was developed at NASA in 2006, and was installed since 2012 in Korea (YonU & PNU).
- Total ozone observation was executed since 1985 in YonU, which is first observation site in South Korea. Furthermore, YonU site operated both Dobson and Brewer spectrophotometers for 20 years.
- Intercomparison of total ozone between Brewer and Dobson was studied based on the observation data (at Seoul).

Ground station for ozone observation in Korea

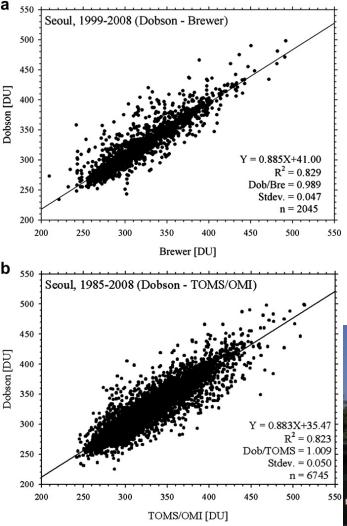
84	85-94	94	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	
----	-------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

Dobson Spectrophotometer WMO/GO3OS Stn. No.252 Yonsei University/KMA Seoul

Brewer #148 Yonsei Univ. Seoul

Pandora Yonsei Univ., Seoul Pusan National Univ., Busan

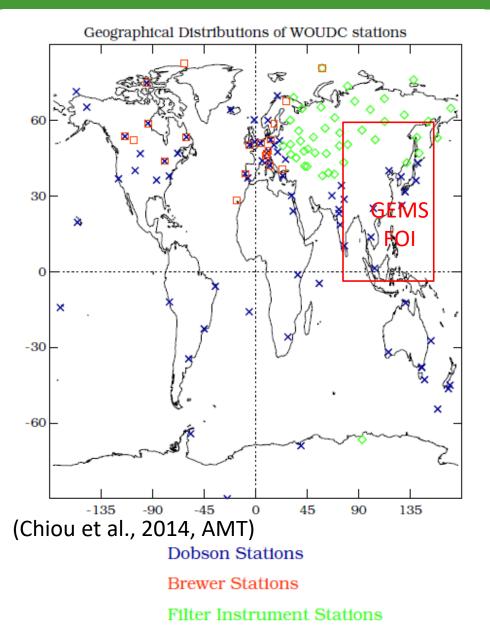
Brewer #095 WMO/GO3OS Stn No. 332. KMA, Pohang


Ozonesonde Model 5A ECC KMA, Pohang

LIDAR Anmyeon KGAW

Brewer KMA, Gosan

Previous Intercomparison



(Park et al., 2012, AE)

- Seoul site : Simultaneously operated to the Brewer and Dobson
- Intercomparison studies have been executed based on daily representative data.
 - Dobson vs Brewer
 - Dobson vs TOMS/OMI (daily-based data)

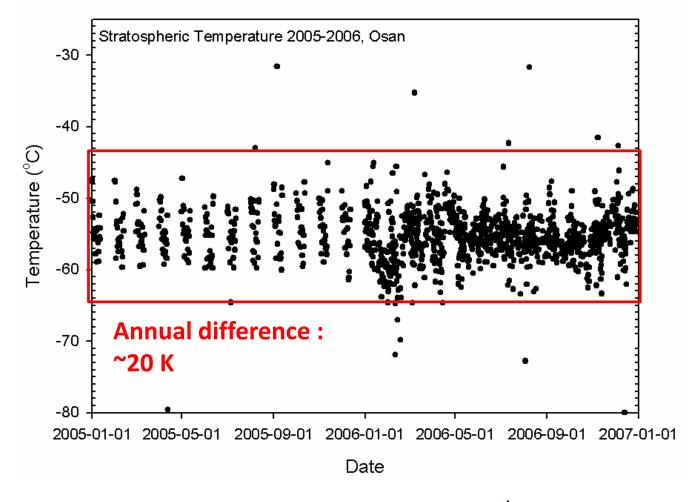
Ground-based observation network

- The ground-based observation network is helpful for validation studies of satellite measurements including GEMS.
- The Pandora spectrometer was purposed on validation for GEMS missions.
- Continuous observation data in daily-scale is also essential to the validation study, because GEMS continuously retrieved the total ozone amount every hour.

Data Selection

Instrument	Observation Interval	Daily Data	Data selection			
Pandora	2 minutes	Averaged	$SZA < 75$ $RMS < 0.05$ $dO_3 < 2 DU$			
Dobson	3-times per day	Representative (lowest SZA)	Mu < 2.6			
Brewer	Tens of minutes	Averaged	SZA < 75			
OMI-TOMS	1-time per day	_	Level-3 (0.25deg.)			
OMI-DOAS	1-time per day	_	Level-3 (0.25deg.)			

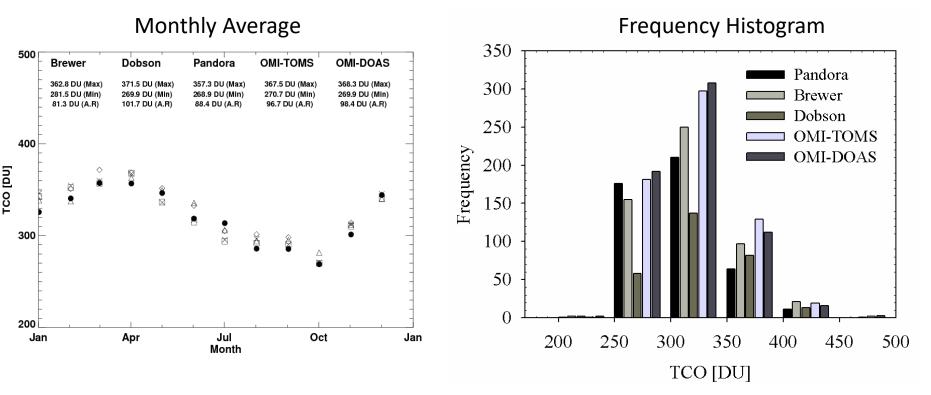
Only Direct-sun data were used (Ground-based measurements)


TCO retrieval methods

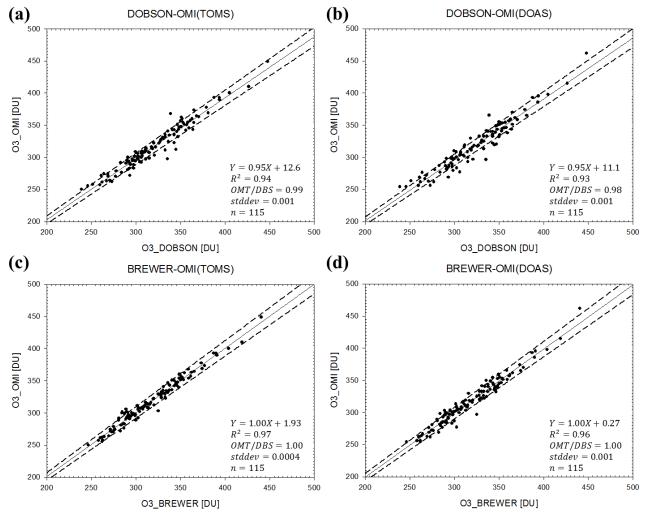
Instrument	Retrieval Method	Cross section Database	T ₀₃ (K)	Data frequency	Key Reference		
Pandora	Spectral fitting (310-330 nm)	Brion et al. (1993, 1998) and Malicet et al. (1995)	225	2 minutes	Herman et al. (2015)		
Dobson	4-wavelength (305.5, 317.5, 325.0, and 339.9 nm)	Bass and Paur (1985)	226.8	3-times per day	Evans and Komhyr (2008)		
Brewer	5-wavelength (306.3, 310.1, 313.5, 316.7,320.0 nm)	Daumont et al. (1992)	228	Tens of minutes	Kerr (2002)		
OMI-TOMS	2-wavelength (317.5 and 331.2 nm)	Bass and Paur (1985)	Varied	1-time per day	Bhartia and Wellemeyer (2002)		
OMI-DOAS	DOAS (331.1 – 336.6 nm)	Bass and Paur (1985)	Varied	1-time per day	Veefkind et al. (2006)		

This study : Ignore temperature correction

(Temperature effect : -0.13~0.33 %/K from Herman et al., 2015)


Effective Ozone Temperature

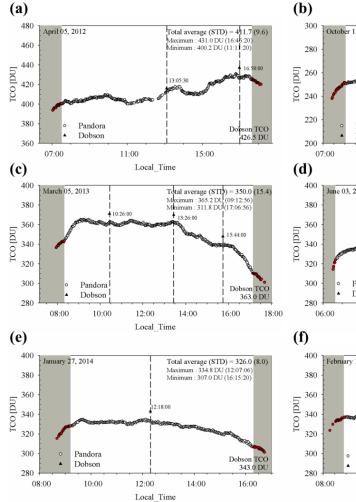
Kim et al. (2007, 10th Brewer Meeting)

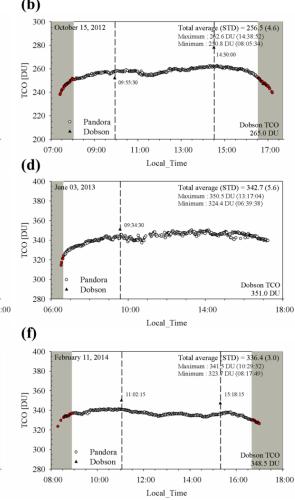

Monthly Variation

Period : 2012/03 ~2014/12

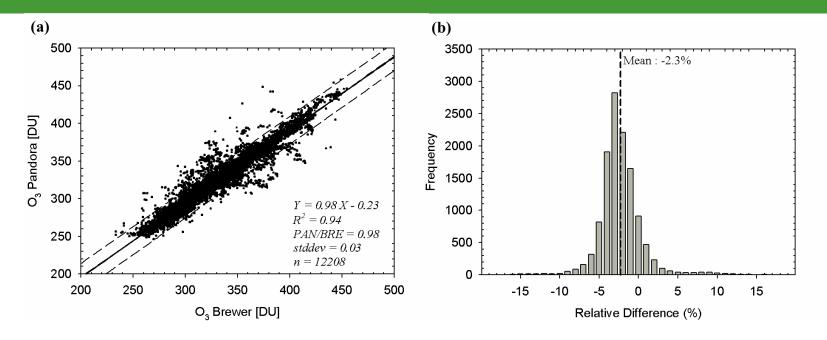
- Total Ozone (TCO) Differences between instruments are caused by the difference method for daily data calculation.
- TCOs from Brewer and Pandora show similar patterns for monthly mean and annual difference of TCO.
 Kim et al. (2017, AMT)

Inter-comparison (Daily)


- Results for intercomparison between ground and satellite
 - Slope : 0.95~1.00
 - R²: 0.93~0.97

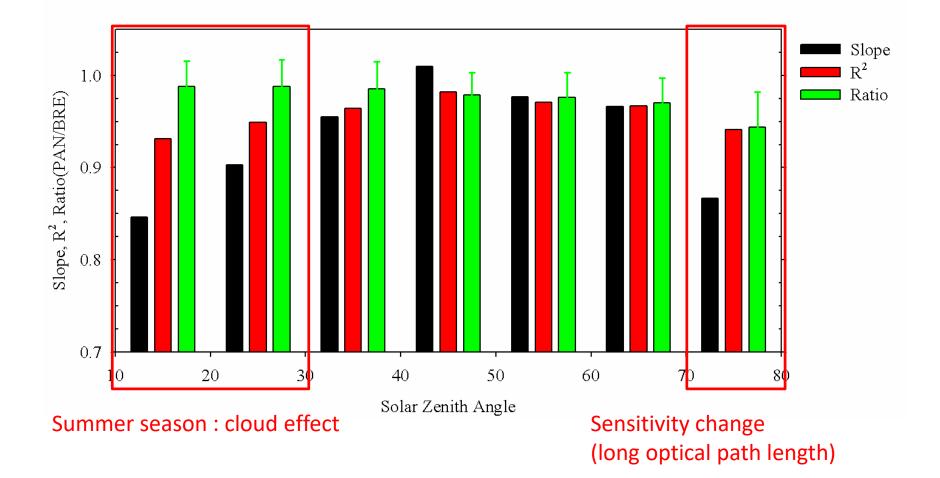

Inter-comparison (Daily)

- Intercomparison for Pandora
 - 2~4% underestimation
 - High correlation coefficients (0.95~0.97)


Simultaneous comparison


- Previous studies for comparison
 - Daily-based data
 - Assumed to be less variable (due to stable stratosphere condition)
- However, diurnal variation of total ozone is sometimes large.
- Simultaneous comparison
 - -Brewer vs Pandora

Simultaneous comparison


- Time difference < 5 minutes
- Total ozone from Pandora were averaged over all data for which the time difference between Brewer and Pandora was less than 5 minutes.
- Mean difference : TCO from Pandora is 2.3% lower than TCO from Brewer. [Insignificant bias]
- Mostly, Pandora TCO is lower than Brewer TCO.
- Precise analysis is required with consideration of temperature dependence.
- 89.2% (57.1%) of data has the difference within 5% (3%).

Timeseries (Brewer vs Pandora)

- The PAN/BRE is mostly less than 1.0 for all periods.
- Seasonal dependence of regression results (due to inaccurate cloud screening).

Simultaneous comparison

Summary

- Daily total ozone data measured by the Pandora spectrophotometer were compared using ground-based and satellite measurements.
- The Pandora total ozone show high agreement with other instruments, with slopes close to 1 and R² greater than 0.95.
- The underestimation of TCO from Pandora in longoptical path-length cases in Seoul can be attributed to the enhancement of aerosol scattering compared to the Brewer (Simultaneous observation).
- Further study
 - SZA dependence
 - Extend the comparison period
 - Checking consistency due to the Pandora instrument change
 - Seasonal Effect due to effective temperature for ozone, and vertical distribution change.