Development of the GEMS surface reflectance retrieval algorithm

Jung-Moon Yoo¹, Kwon-Ho Lee² Hee-Woo Shin² and Sung-Kyun Shin⁴

Ewha Womans Univ.¹ Gangneung-Wonju National Univ.²

Background (theory)

Contents

Algorithm description (flow diagram)

Results (validation)

Ongoing work (more validation, BRDF)

Summary

Final Goals of This Study

• Development of an algorithm for deriving the spectral R_{sfc} at UV & VIS λs .

•Derivation of R_{sfc} database to be used as input to the GEMS retrieval algorithms for trace gases & aerosols in the early stage of GEMS OBSs.

•Provide a prototype of an algorithm to derive R_{sfc} (LER, if possible, BRDF) when enough actual GEMS OBSs are accumulated.

Year	Research Plan	Development	
2014	 Testing the sensitivity of R_{sfc} derivation to geophysical / environmental parameters & OBS errors (2) 	Sen	nsitivity test
2015	• Searching for methods to detect ice/snow • pixels using MOD10 L2 data.	Dis Col	carding snow/ice pixels llecting data for the validation
2016	 Retrieval of the LER for GEMS R_{sfc} product using OMI data Comparison of retrieved LER with LER obtained from OMI 	Dis usii Cor	carding absorbing aerosols ng the ratio between 2 λ <i>s</i> rrection of BRDF effect (plan)

Scenario for GEMS Mission

- Existing R_{sfc} data (e.g., OMI) have been used for any application that requires R_{sfc} as input.
- Existing data may be fitted to BRDF kernels of the VLIDORT basic input for vegetation, regolith & ocean with the MODIS land covers in order to account for differences in observation geometry between different satellites.
- Use R_{min} search method*, & BRDF parameters may be derived.

* $\underline{R}_{\underline{min}}$ method: 1) divide earth surface into grid boxes; 2) accumulate Rayleigh-corrected R_{TOA} data at target λs ; 3) search for a minimum value in each grid to ensure minimum aerosol influence.

Surface reflectance (LER, BRDF)

• **Reality:** at all-scale inhomogeneity $(\lambda, \theta, \phi; \theta_0, \phi_0; x, y, t)$

sand, rocks, etc. vegetation, snow

Lambertian equivalent R_{sfc} (LER)

mixture

R_{sfc} theory

$$R_{TOA} = \frac{\pi L}{F_0 \cos \theta_0}$$

$$R_{TOA}(\theta_0, \theta_v, \phi) = R_{atm}(\theta_0, \theta_v, \phi) + \frac{T(\theta_0)T(\theta_v)R_{sfc}(\theta_0, \theta_v, \phi)}{1 - R_{sfc}(\theta_0, \theta_v, \phi)S^*}$$

$$R_{sfc}(\theta_0, \theta_v, \phi) = \frac{R_{TOA}(\theta_0, \theta_v, \phi) - R_{atm}(\theta_0, \theta_v, \phi)}{T(\theta_0)T(\theta_v) + S^*(R_{TOA}(\theta_0, \theta_v, \phi) - R_{atm}(\theta_0, \theta_v, \phi))}$$

$$R_{atm}(\theta_0, \theta_v, \phi) = R_{atm}^1(\theta_0, \theta_v, \phi) + (1 - e^{\frac{\tau_{total}}{\mu_0}})(1 - e^{\frac{-\tau_{total}}{\mu}})\Delta\tau_{total}$$
single scattering multi-scattering Vermote et al. (2006)

Lambertian approximation is more valid at shorter λ s (weak anisotropy), while in the visible many surfaces are strongly anisotropic.

L = Radiance observed from the sensor<math>T = atmospheric transmittance $F_0 = Extraterrestrial irradiance<math>S^* = Spherical albedo of the atm.$ $\cos \theta_0 = cosine of SZA$ $\tau_{total} = total optical depth of both air molecules & aerosols<math>\theta_V = SVZA$ $\varphi = RAA$

Flow chart for monthly $\rm R_{sfc}$ using accumulated LER, & calculation of BRDF coeff

Output at each pixel (ex, 3yr data)

OUTPUT		UNITS		7	l	BRDF
Lat		deg	-			
Lon		deg	_			-
λ		nm				
Monthly min R _{sfc}	(12)	unitless	328, 335,	342,	345, 354, 367,	
Monthly R _{sfc}	(36)	unitless	372, 376,	380,	388, 406, 416,	Fitting BRDF kernels
Yearly min R _{sfc}	(1)	unitless	418, 425, 471, 477,	440, 488,	442, 452, 463, 494, 499 nm	for Vegetation, Regolith & Ocean
Yearly R _{sfc}	(3)	unitless	(23 λ	5)	
Monthly R _{sfc} Flag		unitless	_			
Yearly R _{sfc} Flag		unitless				

OMI data as proxy before GEMS

✤Input (L1B R_{TOA})

- ✓ Resolution: 13 x 24 km
- ✓ Hyperspectral λ
 - UV-1 Ch = 270-314 nm
 - UV-2 Ch = 306-380 nm
 - VIS Ch = 350-500 nm

Flow diagram for deriving R_{sfc} from GEMS algorithm

Atmospheric correction

- RGB-like image from OMI (B=360nm, G=420nm, R=484nm) → Sfc features stand out after the Rayleigh correction.
- Based on 6SV, Rayleigh & aerosol corrections have to be done in order to derive R_{sfc} from R_{TOA}.

Preliminary result in progress

LER: GEMS domain, Jul 2005-2006

Validation

- Compare LER_{GEMS} with LER_{OMI} near Korea (0.5° X 0.5°) at 3 λs, using OMI data during 2005-2008.
- Large LERs in Shandong of China, low in E coast of S Korea & similar in the Yellow Sea.
- Different in northern area of N Korea due to topography, & after its correction (VLIDORT), & then apply LER_{GEMS} to BRDF.

Validation

Scatter plots between R_{min} derived from OMI L1B in this study & the OMI sfc LER

 Comparably good agreement between LER_{GEMS} & LER_{OMI} (R > 0.7, RMSE < 0.015)

- LER_{GEMS} is overestimated when filtering of the aerosol effect is not sufficient. \rightarrow *Extend data-period or rigorous aerosol correction over China.*

Validation plan

- Area: GEMS viewing area (5S-55N, 75E-145E)
- Period: 2005.1.1 2006.12.31
- Datasets

MODIS MCD43 product

- ✓ Black-sky albedo (LER_{GEMS} comparison)
- no downward diffuse comp, directional hemis R
- ✓ White-sky albedo
- no directional downward comp, isotropic diffuse comp
- ✓ Blue-sky albedo
- LER from OMI
- AERONET: Ground-based AOD

Example of validation (Kleipool et al. 2008)

- Comparison (OMI minus MODIS) of OMI LER data (X 100) with MODIS black sky albedo at 470 nm.
- Good agreement is over bare land, ice & deserts (0.01 higher LER_{OMI}; BRDF_{MODIS} consistent with LER).
- Cloud problems in OMI data are visible over convective regions.
- LER_{OMI} is 0.02 higher for other land covers.
- We expect the above similar results in the LER_{GEMS} case.

R_{sfc} Anisotropy: Correction for BRDF Effects

- When enough samples of bi-directional R_{sfc} data can be derived for wide range of sun-satellite viewing geometries for given locations, BRDF models can be determined by fitting those data to a suitable BRDF kernel ft.
- This method may be a little bit challenging for OMI OBSs, but it may work for GEMS OBSs, considering its higher spatiotemporal resolutions.

An Application using Ross-Li BRDF Model:

Example of A BRDF Kernel

$$\begin{split} R(\theta_0,\theta_v,\phi,\Lambda) &= f_{iso}(\Lambda) \\ &+ f_{vol}(\Lambda) \, K_{vol}(\theta_0,\theta_v,\phi) \\ &+ f_{geo}(\Lambda) K_{geo}(\theta_0,\theta_v,\phi) \\ K_{vol} &= \frac{(\pi/2-\xi)\cos\xi + \sin\xi}{\cos\theta_0 + \cos\theta_v} - \frac{\pi}{4} \\ K_{geo} &= O(\theta_0,\theta_v,\phi) - \sec\theta_0' - \sec\theta_v' \\ &+ \frac{1}{2}(1+\cos\xi') \sec\theta_0' \sec\theta_v' \end{split}$$

BRDF input

Surface type	Input	Reference	
	Oceanic pigment concentration, Wind speed, Wind		
Water	direction azimuth angle, Oceanic salinity	Cox & Munk (1954)	
	Isotropic coeff, Volumetric coeff, Geometric		
Vegetation	shadowing coeff, Hot spot magnitude, Hot spot	Ross (2012)	
	width		
	Surface particle single scattering albedo, Surface		
Regolith	particle asymmetry factor, Hot spot magnitude,	Hapke (1981)	
	Width of hotspot		

Summary

- The LER is derived from the GEMS R_{sfc} retrieval algorithm by using the proxy data.
- The results showed that the retrieved LER was in good agreement with the LER obtained from OMI (R > 0.7, RMSE < 0.015).</p>
- More data will be collected to obtain better results in LER retrieval.

The R_{min}(GEMS) results will be improved with correction of BRDF effect.

- Based on BRDF-kernel driven model, methods to consider the anisotropy of R_{sfc} are being developed.
- The validations will be performed in order to investigate the accuracy of the product from the GEMS R_{sfc} retrieval algorithm.

Yoo et al. (2015, ACP)

GWNU

GANGNEUNG-WONJU NATIONAL UNIVERSIT

GEMS

1000

300-500

nm

7 x 8 km²

@ Seoul

3.5x8 km²

(aerosol)

1 hr

2B

13

nm

1 hr

GEO-KOMPSAT 2

GEMS Concept of Operations

• GEMS OBS Timeline (TBD)

Operation mode		Observation Freq. (min)	E-W Scan coverage (@lat. of Seoul)
	Normal	60*	75E – 145°E (70 deg wide)
Special	EA (East Asia)	60*	110°E – 140°E (30 deg wide)
	EEA (Enhanced East Asia)	60*	115°E – 130°E (15 deg wide)
	LA (Local Area)	< 30	In emergency by ground command

- Imaging time 30 min + Transmission 30 min to avoid mechanical disturbance with GOCI-2
- Wheel offloading will be performed in one of GEMS & GOCI-II imaging slots
 4 consecutive months in GEMS slots and another 4 consecutive months in GOCI-II slots

Wavelength[nm]

< λ range of OMI, TOMS, and GEMS sensors>

- GEMS : 300-500 nm
- TOMS: 307, 311, 316, 321, 330, 359 nm
- GOME : 231-302, 307-316, 311-405, 405-611, 595-794 nm
- OMI : 264-311, 307-383, 349-504 nm

Baseline products (#16)

Input for VLIDORT

INPUT	UNITS	INPUT	UNITS
Irradiance Exponent (UV-2)	photon/s*cm ^{2*} sr*nm	Irradiance Exponent (VIS)	photon/s*cm ² *sr*nm
Irradiance Mantissa (UV-2)	photon/s*cm ^{2*} sr*nm	Irradiance Mantissa (VIS)	photon/s*cm ² *sr*nm
λ Coeff (UV-2)	unitless	λ Coeff (VIS)	unitless
λ Reference Column(UV-2)	unitless	λ Reference Column (VIS)	unitless
Pixel Quality Flags (UV-2)	unitless	Pixel Quality Flags (VIS)	unitless
Radiance Exponent (UV-2)	photon/s*cm ^{2*} sr*nm	Radiance Exponent (VIS)	photon/s*cm ² *sr*nm
Radiance Mantissa (UV-2)	photon/s*cm ^{2*} sr*nm	Radiance Mantissa (VIS)	photon/s*cm ² *sr*nm
Lat (UV-2)	degree	Lat (VIS)	deg
Lon (UV-2)	degree	Lon (VIS)	deg
Terrain Height (UV-2)	meter	Terrain Height (VIS)	meter
SAA (UV-2)	degree	SAA (VIS)	deg
SZA (UV-2)	degree	SZA (VIS)	deg
SVAA (UV-2)	degree	SVAA (VIS)	deg

Vector code LInearized Discrete Ordinate Radiative Transfer