Development of the GEMS surface reflectance retrieval algorithm

Jung-Moon Yoo¹, Kwon-Ho Lee² Hee-Woo Shin² and Sung-Kyun Shin-

Ewha Womans Univ.¹ Gangneung-Wonju National Univ.²

Introduction (goals by year for R_{sfc})

Background (theory)

contents

Algorithm description (flow diagram)

Results (validation)

Ongoing work (more validation, BRDF)

Summary

•*Development of an algorithm for deriving the spectral Rsfc at UV & VIS λs .*

•*Derivation of Rsfc database to be used as input to the GEMS retrieval algorithms for trace gases & aerosols in the early stage of GEMS OBSs.*

•*Provide a prototype of an algorithm to derive Rsfc (LER, if possible, BRDF) when enough actual GEMS OBSs are accumulated.*

Scenario for GEMS Mission

- **Existing R_{sfc}** data (e.g., OMI) have been used for any *application that requires* R_{sfc} *as input.*
- *Existing data may be fitted to BRDF kernels of the VLIDORT basic input for vegetation, regolith & ocean with the MODIS land covers in order to account for differences in observation geometry between different satellites.*
- *Use* **Rmin** *search method*, & BRDF parameters may be derived.*

** Rmin method: 1) divide earth surface into grid boxes; 2) accumulate Rayleigh-corrected R_{TOA} data at target* λ *s; 3) search for a minimum value in each grid to ensure minimum aerosol influence.*

Surface reflectance (LER, BRDF)

• **Reality:** at all-scale inhomogeneity $(\lambda, \theta, \phi; \theta_o, \phi_o; x, y, t)$

mixture seasonal sand, rocks, etc. vegetation, snow

Lambertian equivalent R_{sfc} (LER) **BRDF**

Rsfc theory

$$
R_{TOA} = \frac{\pi L}{F_0 \cos \theta_0}
$$

\n
$$
R_{TOA}(\theta_0, \theta_v, \varphi) = R_{atm}(\theta_0, \theta_v, \varphi) + \frac{T(\theta_0)T(\theta_v)R_{sfc}(\theta_0, \theta_v, \varphi)}{1 - R_{sfc}(\theta_0, \theta_v, \varphi)S^*}
$$

\n
$$
R_{sfc}(\theta_0, \theta_v, \varphi) = \frac{R_{TOA}(\theta_0, \theta_v, \varphi) - R_{atm}(\theta_0, \theta_v, \varphi)}{T(\theta_0)T(\theta_v) + S^*(R_{TOA}(\theta_0, \theta_v, \varphi) - R_{atm}(\theta_0, \theta_v, \varphi))}
$$

\n
$$
R_{atm}(\theta_0, \theta_v, \varphi) = R_{atm}^1(\theta_0, \theta_v, \varphi) + (1 - e^{\frac{-\text{Total}}{\mu_0}})(1 - e^{\frac{-\text{Total}}{\mu}})^{\Delta \tau_{total}}
$$

\n_{single scattering}

Lambertian approximation is more valid at shorter s (weak anisotropy), while in the visible many surfaces are strongly anisotropic.

 $L =$ Radiance observed from the sensor $T =$ atmospheric transmittance $F_0 = Extracterrestrial\,irradiance$ $\cos \theta_0 = \cos$ *cosine of SZA* $\theta_V = SVZA$ $\varphi = RAA$ $S^* = Spherical$ albedo of the atm. τ_{total} = total optical depth of both air molecules & aerosols Flow chart for monthly R_{sfc} using accumulated LER, & calculation of BRDF coeff

Output at each pixel (ex, 3yr data)

OMI data as proxy before GEMS

\cdot **PInput** (L1B R_{TOA})

- \checkmark Resolution: 13 x 24 km
- \checkmark Hyperspectral λ
	- UV-1 Ch = 270-314 nm
	- UV-2 Ch = 306-380 nm
	- VIS Ch = 350-500 nm

Flow diagram for deriving R_{sfc} from GEMS algorithm

Atmospheric correction

- RGB-like image from OMI (B=360nm, G=420nm, $R=484$ nm) \rightarrow Sfc features stand out after the Rayleigh correction.
- Based on 6SV, Rayleigh & aerosol corrections have to be done in order to derive R_{sfc} from R_{TOA} .

Preliminary result in progress

LER: GEMS domain, Jul 2005-2006

Validation

- Compare LER_{GEMS} with LER_{OMI} near Korea (0.5° X 0.5°) at 3 λ s, using OMI data during 2005-2008.
- Large LERs in Shandong of China, low in E coast of S Korea & similar in the Yellow Sea.
- Different in northern area of N Korea due to topography, & after its correction (VLIDORT), & then apply LER_{GENS} to BRDF.

Validation

Scatter plots between R_{min} derived from OMI L1B in this study & the OMI sfc LER

Comparably good agreement between LER $_{\text{GENS}}$ & LER $_{\text{OMI}}$ $(R > 0.7, RMSE < 0.015)$

 $-$ LER_{GEMS} is overestimated when filtering of the aerosol effect is not sufficient. \rightarrow *Extend data-period or rigorous aerosol correction over China.*

Validation plan

- **Area:** GEMS viewing area (5S-55N, 75E-145E)
- **Period: 2005.1.1 - 2006.12.31**
- **Datasets**

MODIS MCD43 product

- \checkmark Black-sky albedo (LER_{GEMS} comparison)
- no downward diffuse comp, directional hemis R
- \checkmark White-sky albedo
- no directional downward comp, isotropic diffuse comp
- \checkmark Blue-sky albedo
- **LER from OMI**
- **AERONET:** Ground-based AOD

Example of validation (Kleipool et al. 2008)

- **Comparison (OMI minus MODIS) of OMI LER data (X 100) with MODIS black sky albedo at 470 nm.**
- **Good agreement is over bare land, ice & deserts (0.01 higher LER_{OMI}; BRDF**_{MODIS} consistent with LER).
- **Cloud problems in OMI data are visible over convective regions.**
- LER_{OMI} is 0.02 higher for other land covers.
- **We expect the above similar results in the LER_{GEMS} case.**

R_{sfc} Anisotropy: Correction for BRDF Effects

- \blacklozenge When enough samples of bi-directional $R_{\rm sfc}$ data can be derived for wide range of sun-satellite viewing geometries for given locations, BRDF models can be determined by fitting those data to a suitable BRDF kernel ft
- This method may be a little bit challenging for OMI OBSs, but it may work for GEMS OBSs, considering its higher spatiotemporal resolutions.

An Application using Ross-Li BRDF Model:

Example of A BRDF Kernel

$$
R(\theta_0, \theta_v, \phi, \Lambda) = f_{iso}(A)
$$

+ $f_{vol}(A) K_{vol}(\theta_0, \theta_v, \phi)$
+ $f_{geo}(A) K_{geo}(\theta_0, \theta_v, \phi)$

$$
K_{vol} = \frac{(\pi/2 - \xi)\cos\xi + \sin\xi}{\cos\theta_0 + \cos\theta_v} - \frac{\pi}{4}
$$

$$
K_{geo} = O(\theta_0, \theta_v, \phi) - \sec\theta'_0 - \sec\theta'_v
$$

+ $\frac{1}{2}(1 + \cos\xi')\sec\theta'_0 \sec\theta'_v$

BRDF input

Summary

- \blacklozenge The LER is derived from the GEMS R_{sfc} retrieval algorithm by using the proxy data.
- ◆ The results showed that the retrieved LER was in good agreement with the LER obtained from OMI ($R > 0.7$, RMSE < 0.015).
- More data will be collected to obtain better results in LER retrieval.

 \blacklozenge The R_{min}(GEMS) results will be improved with correction of BRDF effect.

- Based on BRDF-kernel driven model, methods to consider the anisotropy of R_{sfr} are being developed.
- The validations will be performed in order to investigate the accuracy of the product from the GEMS $R_{\rm sfc}$ retrieval algorithm.

Yoo et al. (2015, ACP)

NT.

GANGNEUNG-WONJI

300-500

nm

7 x 8 km² @ Seoul 3.5x8 km²

(aerosol)

GEO-KOMPSAT 2

GEMS Concept of Operations

• GEMS OBS Timeline (TBD)

- Imaging time 30 min + Transmission 30 min to avoid mechanical disturbance with GOCI-2
- Wheel offloading will be performed in one of GEMS & GOCI-II imaging slots 4 consecutive months in GEMS slots and another 4 consecutive months in GOCI-II slots

 α ange of OMI, TOMS, and GEMS sensors>

- GEMS : 300-500 nm
- TOMS: 307, 311, 316, 321, 330, 359 nm
- GOME : 231-302, 307-316, 311-405, 405-611, 595-794 nm
- OMI : 264-311, 307-383, 349-504 nm

Baseline products (#16)

Input for VLIDORT

Vector code LInearized Discrete Ordinate Radiative Transfer