The 4th GEMS Science Meeting

Development of NO₂ and SO₂ retrieval algorithm for GEMS

Young J. Kim and Jihyo Chong

Advanced Environmental Monitoring Research Center (ADEMRC) School of Environmental Science and Engineering Gwangju Institute of Science and Technology(GIST), Gwangju, Korea

> October 14-17, 2013 Hotel Seokyo, Seoul, Korea

Study areas

- Develop algorithms for NO₂ and SO₂ retrieval for GEMS: flowchart
 - SO₂ sensitivity simulation (290-500 nm)
 - **Airborne I-DOAS measurements**

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

SO₂

Comparison with GEMS and TEMPO

	GEMS	ΤΕΜΡΟ
Wavelength (nm)	300-500	290-490
Sample ratio (1 K detector)	3 sample (0.2 nm)	3 sample (0.2 nm)
Fitting window for SO ₂ (nm)	310- 330	305-345
Spectral resolution (nm)	0.6	0.6
	If wavelength is between 290 and 500, SO ₂ sensitivity?	
(A)	0.6 nm (2.8 sampling)	(B) 0.63 nm
	5	

SO₂ vertical column density

Uncertainty of fitted column

Simulation for SO₂

Methodology for simulating measurement accuracy for different FWHMs(0.63 nm)

Molecular cross section for SO₂ analysis (315-330nm)

KOREA M

Case 1: Southern China (Feb. 28, 2007)

G

SO₂ slant column density and Uncertainty (310-330 nm)

Instrumental spectral resolution (nm/pixel)

	SCD	fitting error	relative fitting error	min.	max.
0.1 nm	4.53E+16	2.04E+16	45.0%	2.49E+16	6.57E+16
0.6 nm	1.34E+17	5.50E+16	41.1%	7.90E+16	1.89E+17
0.63 nm	1.02E+17	6.08E+16	59.9 %	4.02E+16	1.62E+17

Instrument set-up: airborne Imaging DOAS

Schematic of Airborne I-DOAS

Airborne Imaging DOAS principle

Ideal measurement conditions:

- 1. No clouds
- 2. Similar measurement time as satellites overpass
- 3. Gyro stabilizer compensate ± 10 degree movements
- 4. Consider the straightforward flight route,

Methodology: airborne I-DOAS

Spatial Resolution of flight route

GOME (40X320)

GOME2 (40X40)

OMI (15X30)

Airborne I-DOAS (0.01X0.2)

SCIAMACHY validation (Fix et al., 2005)

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

Comparison for airborne DOAS

	Previous study	This study
Visualized trace gas	NO ₂ ⁽¹⁾ , OClO ⁽²⁾ and SO ₂ ⁽³⁾ (volcano)	NO ₂
Measurement method	Airborne MAX-DOAS ⁽¹⁻³⁾	Airborne Imaging DOAS ⁽⁴⁾
Telescope	variable	Nadir mode (0 degree)
Altitude	variable	< 3 km
Objectives	SCHIMACHY Validation ⁽²⁾ NO ₂ Profile retrieval ^(1, 5)	Validation for OMI & GEMS validation in the future

(1) Retrieval of Profile Information from Airborne Multi Axis UV/visible Skylight Absorption Measurements, Bruns et al., Applied Optics 43, 4415, 2004

(2) SCIAMACHY validation by aircraft remote sensing: design, execution, and first measurement results of the SCIA-VALUE mission, Fix et al., ACP 5, 1273, 2005

(3) Airborne multi-axis DOAS measurements of tropospheric SO₂ plumes in the Po-valley, Italy, Wang et al., ACP 6, 329, 2006

(4) Direct observation of two dimensional trace gas distribution with an airborne Imaging DOAS instrument, Heue et al., Atmos. Chem. Phy. Discuss., 2008

(5) NO2 Profile retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe, Bruns et al., ACP 6, 3049, 2006

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

Analysis flowchart

Over the power plants pollution plume high column densities were observed. The enhanced local concentrations also lead to an increase in both I-DOAS and satellite's NO_2 data. Due to the large field of view of OMI, the data are affected by the low column densities outside the pollution sources.

Da	ite	Time	ground MAX-DOAS	Flight pathway	note
2011	1/31	PM	mini MAX-DOAS	1	test flight
	12/5	PM	dual MAX-DOAS	2	
	12/6	PM	dual MAX-DOAS	2	
	3/8	PM	no	2	test flight
	4/26	PM	mini MAX-DOAS	2	DRAGON Campaign
2012	4/27	PM	mini MAX-DOAS	2	DRAGON Campaign
2012	11/10	AM	mini MAX-DOAS	2	
	11/10	PM	mini MAX-DOAS	1	
	11/15	PM	mini MAX-DOAS	2	
				1: clockwise pathway from	starting point
				2. count de dunies pothurs	from starting point

2: count clockwise pathway from starting point

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

The analysis flowchart

(http://www.temis.nl/)

21

2011/12/05_Aircraft measurement pathway

2011/12/05_Aircraft measurement pathway

2011/12/05_Aircraft measurement

OMI vs. A I-DOAS: 2011/12/05_Aircraft measurement

2012/04/26_Aircraft measurement

OMI vs. A I-DOAS: 2012/04/26_Aircraft measurement

2012/04/27_Aircraft measurement

OMI vs. A I-DOAS: 2012/04/27_Aircraft measurement

10

15

	Overpass time
A I-DOAS	10:30~13:00
OMI	11:49~13:28

NO₂ trop. column [10¹⁵ molec./cm²] 234 6 8 11 15 20

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

> NO₂ & SO₂ retrieval algorithms are still under development, based on BOAS or DOAS technique.

> For SO₂ sensitivity test, 3 sampling case was simulated better than 2.8 sampling in terms of fitting column, however, there was no different AMF value for 2 cases.

➢For 0.6 nm & 0.63 nm spectral resolution, fitting error was relatively low in case of 0.6 nm.

On the first aircraft measurement day (31 Jan, 2011), the retrieval of airborne I-DOAS was not analyzed due to the much cloud. The results of airborne I-DOAS was relatively higher than that of satellite due to the spatial resolution.

We'll Investigate the airborne I-DOAS application to validate satellite data and to compare GEMS with high spatial resolution with in-situ instruments.

30

Future works

Thanks for your attention!

yjkim@gist.ac.kr or jihyojung@gist.ac.kr

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013

G

SO₂

The 4th GEMS Science Meeting, Hotel Seokyo, Seoul, Korea, 14-17 October 2013