Surface Reflectance Retrievals from GEMS Observations: Algorithm Development, Validation Effort, and

Sensitivity Test

Jung-Moon Yoo

Ewha Womans University

Myeong-Jae Jeong (MJ)

Gangneung-Wonju National University

<u>Outline</u>

>Introduction:

Goal, R_{sfc} Definition & Problem

Timelines of the R_{sfc} Algorithm Development

Algorithm Development

Cloud-Screening for R_{sfc} Derivation:

- Method & Pixel-resolution effect

Atmospheric Correction

≻Validation of R_{sfc}:

Plans and On-going Efforts

Sensitivity of R_{sfc} w.r.t. Radiometric Errors in TOA Reflectance

>Analysis on the Existing R_{sfc} Data Products

<u>**Goal</u>: Providing Accurate Boundary Conditions for Radiative Transfer / Climate Models and Remote Sensing**</u>

- <u>Energetics</u>:
 - relating limited measurements of angular reflectance to flux albedo a crucial input parameter to climate/environment models.
- <u>Remote sensing</u>:
 - characterizing surface anisotropy to interpret off-nadir radiances acquired by satellite sensors (e.g., for retrievals of aerosols and trace gases).

Definition of Surface Reflectance and Problem of Its Derivation

• *Theory:* Simple definition,

 $R_{sfc}(\lambda, \theta, \phi; \theta_0, \phi_0; t, x, y) = \frac{I(\lambda, \theta, \phi; \theta_0, \phi_0; t, x, y)_{reflected}}{I(\lambda, \theta, \phi; \theta_0, \phi_0; t, x, y)_{reflected}}$

 $I(\lambda, \theta_0, \phi_0)_{incident}$

- but complicated multi-dimension (4~8) problem! → Need Time-dependent Bidirectional Reflectance Distribution Function (BRDF)
- **Reality:** at all-scale inhomogeneity

mixture ofseasonaldiverse biomes,transitionssfc moisture, etc.

fine sand, rocks,vegetation, snow,gravel, shrub,small waterdunes, etc.bodies

Timelines for the R_{sfc} Algorithm Development

The Algorithm: Flowchart for R_{sfc} Derivation (Plan for GEMS, Work-in-progress) **Calibrated Level 1** Spectral R_{TOA} A proto-type (selected wavelengths) algorithm for selected **Atmospheric** wavelengths $\leftarrow - \dashv$ No Cloud ? (Rayleigh + Gas) is currently corrections under Yes development. Absorbing Snow/Ice? aerosols? No No Yes Yes **Discard Data** Data fitting to **Build histogram &** Data **BRDF** model find R_{min} accumulation (BRDF parameter)

Algorithm Development I: Cloud-Screening for R_{sfc} Derivation

Cloud-screening for R_{sfc} Derivation (1)

✓Thresholds of TOA reflectance (R_{toa})

✓ Thresholds for spatial variability of R_{toa}

✓ Ultraviolet Aerosol Index [UV AI] (plan)

✓ Use of polar orbiting satellite data to filter out cirrus-

prevailing scenes (plan)

➔ Threshold values of TOA reflectance and its spatial variability for R_{sfc} derivation are being determined with consideration of sensor (pixel) spatial resolutions.

Cloud-screening for R_{sfc} Derivation (2)

✓ Thresholds of TOA reflectance (R_{toa})

 \checkmark Thresholds for spatial variability of R_{toa} Smoke \rightarrow high Al values

Clouds → Al~0

✓ Ultraviolet Aerosol Index [UV AI] (plan)

✓ Use of polar orbiting satellite data to filter out cirrus-

prevailing scenes (plan)

• UV Aerosol Index (AI) tends to be close to zero for cloudy pixels.

• UV AI become higher for pixels with UV-absorbing aerosols.

→ UV AI can be utilized for cloud-screening & absorbing aerosol detection in the process of R_{sfc} derivation.

Cloud-screening for R_{sfc} Derivation (3)

✓ Thresholds of TOA reflectance (R_{toa})
 ✓ Thresholds for spatial variability of R_{toa}
 ✓ Ultraviolet Aerosol Index [UV AI] (plan)

(Huang et al. 2012, JGR submitted)

✓ Use of polar orbiting satellite data to filter out cirrusprevailing scenes (plan)

Nearly Invisible Cirrus

MODIS RGB Image

♦ Cirrus is often hard to be detected
 from UV/Visible observations.
 → We are checking possibility of using
 1.38µm channels from polar-orbiting
 satellite sensor(e.g., VIIRS, MODIS).

Cloud-Screening for R_{sfc} Derivation: Effects of Pixel Resolution

RGB Image: 1x1km Resolution

RGB Image: 8x7km Resolution

→ RGB image from 1km resolution MODIS data

→RGB image from aggregated pixels
 with 8x7km resolution
 →Signals from small-scale clouds and
 surface features are smeared out.

Cloud-Screening for R_{sfc} Derivation: Effects of Pixel Resolution

Cloud Mask: 1x1km Resolution

Cloud Mask: 8x7km Resolution

→ Cloudy pixels in red. Cloudmasking based on combination of reflectance threshold and spatial variability of visible bands.

→Results with same cloudmasking applied to 8x7km data.
→Missing small-scale clouds and losing some cloud-free pixels.

Cloud-Screening for R_{sfc} Derivation: Effects of Pixel Resolution

→ Sub-pixel cloud fraction for 8x7km pixels. Cloud-screening was made using 1x1km resolution data to estimate the cloud fraction. →At a low spatial resolution, cloudscreening often fails to detect cloudy pixels with small-scale clouds taking a small portion of each pixel.

Algorithm Development II: <u>Atmospheric Correction</u> for R_{sfc} Derivation

Atmospheric Correction (Rayleigh Scattering and Aerosol Scattering + Absorption)

- ✓ Multiple scattering/reflection effects by air molecules need to be removed to derive R_{sfc} by searching for R_{min}.
- ✓ To produce R_{sfc} validation data, accurate AOT data and aerosol optical property models that represent the background aerosol conditions in the region of interest are necessary. → Under investigation.

 R_{sfc} may be derived. \rightarrow Not suitable for R_{sfc} derivation.

Red dots in the above images stand for the locations of wildfire hot spots.

Sensitivity Test: Sensitivity of R_{sfc} w.r.t. Radiometric Errors in TOA Reflectance

Sensitivity of Spectral R_{sfc} with respect to the Errors in TOA Reflectance (R_{toa})

The closed-circle symbols corresponds to simulation results with R_{sfc} values of 0.001, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50, 0.75, and 1.0, respectively at each given wavelength.

Validation of the Derived R_{sfc}: Plans and On-going Efforts

Validation Methods for R_{sfc}

- Ground-based Measurements
 - ✓ Relatively-low / Moderate cost
 - Relatively short data reduction processing required
 - Point-wise measurements, not representative to a large area
 - ✓ Manual-intensive to cover large areas
- Air-borne Measurements
 - ✓ Higher cost
 - ✓ Moderately large spatial coverage
 - ✓ Requires diverse manpower
 - Need intensive post-measurement processing

* Atmospheric Correction with a priori Aerosol Information

- Lowest cost when using existing aerosol measurement systems (e.g., AERONET)
- Relatively homogeneous and low aerosol loading are required.

(1) Ground-based Measurements

Photos courtesy of Si-Chee Tsay

PARABOLA (Portable Apparatus for Rapid Acquisitions of Bidirectional Observations of Land and Atmosphere)

ASD FieldSpec Pro attached to a telescope mount

(2) Air-borne Measurements

(3)-a Atmospheric Corrections: Sun-photometer (e.g., AERONET) + Satellite Observations

(3)-b Atmospheric Corrections: Hand-held Sun-photometer + Satellite Observations

Model 540 MICROTOPS II[®] A 5-channel hand-held sunphotometer for measuring aerosol optical thickness (AOT) with a GPS system to automatically acquire geolocation, altitude, and observation time information.

- Spectral configurations: 340, 440, 675, 870, 936nm → (4 aerosol + 1 water vapor channels)
- Uncertainty of AOT in each channel < 0.05.

→ One set (and more in the near future) of this instrument will be utilized to produce validation datasets.

Production of Aerosol Data to Validate Satellitebased Surface Reflectance AERONET AOT v.s. Microtops II® AOT

(GWNU, 1 Mar – 31 May, 2012 during the DRAGON-K Field Campaign)

 Good agreements were observed between AERONET and Microtops AOT. (It seems better than the estimated uncertainty level[±0.05] for Microtops.)
 More Microtops AOT observations where AOT measurements are scarce are being planned.

Temporal window of match-ups 15min (within \pm 7.5min from the Microtops II[®] obs.)

Analysis on Existing R_{sfc} Data Products

R_{sfc} from OMI, TOMS, and SeaWiFS over the GEMS Domain

OMI R_{sfc} at 380nm (April)

TOMS R_{sfc} at 380nm (April)

→Each product shows similar patterns at given wavelengths. →TOMS R_{sfc} tends to be lower than OMI R_{sfc} .

Spatial resolutions: OMI 0.5x0.5deg; TOMS 1.25x1deg; SeaWiFS 0.1x0.1deg.

Spectral R_{sfc} from OMI[#], TOMS[#] and SeaWiFS[&]

→ Spectral behaviors depending on land cover types are consistent between R_{sfc} products.
 → Up to 1%(areal mean) of differences were found between R_{sfc} products.
 (#data for April; &data for Spring)

Example. The Impact of R_{sfc} Error on the Data Products in the Downstream \rightarrow Errors in AOT Retrievals

Retrieved AOT v.s. True AOT when forced Rsfc errors (E) were given to the aerosol retrieval algorithm as input.

→ About ±1% (=0.01) of R_{sfc} errors may result in up to ±0.2 of AOT errors at blue wavelengths for low to intermediate aerosol loading conditions.

<u>Summary</u>

 R_{min} search method is to be utilized for GEMS to derive R_{sfc} (300-500nm).

Cloud-screening algorithm module is under development by considering the effects of spatial resolution of pixel (sensor footprint).

Aerosol data for R_{sfc} validation are being collected and produced.

Existing R_{sfc} data products from OMI, TOMS, and SeaWiFS are being analyzed (a) to understand the characteristics of R_{sfc} in the domain of interest and (b) to determine the level of uncertainty in the derived R_{sfc} .