Feasibility study of tropospheric ozone retrieval using multi-spectral synergetic approach with UV, TIR and microwave measurements from space

Tomohiro O. Sato <tosato@nict.go.jp>

National Institute of Information and Communications Technology (NICT), Japan

Co-authors:

T. M. Sato^{1,2}, H. Sagawa³, K. Noguchi⁴, N. Saitoh⁵, H. Irie⁵, K. Kita⁶, K. Zettsu¹, M. Mahani¹, R. Imasu⁷, S. Hayashida⁴, Y. Kasai^{1,8,9}

1 NICT / 2 Japan Aerospace Exploration Agency, Kanagawa / 3 Kyoto Sangyo University / 4 Nara Women's University / 5 Center for Environmental Remote Sensing Chiba University / 6 Ibaraki University / 7 Atmosphere and Ocean Research Institute, The University of Tokyo / 8 Tokyo Institute of Technology / 9 Tsukuba University Published in:

T. O. Sato et al., *AMT*, **11**, 1653-1668, 2018.

Introduction

- 7 million people died as a result of effects of air pollution in 2012 [WHO, 2014].
- Tropospheric ozone:
 - One of major air pollutants

Crops

Increasing / keep high level

Ozone distribution at 0-3 km in June [Hayashida et al., 2015]

Monitoring of vertically resolved ozone amount is required.

Stratosphere:

- Absorption of solar UV radiation
- Central role of stratospheric chemistry

Troposphere:

- The third largest global warming gas

owermost Troposphere: - Harmful pollutant

Objective

- Our idea = Adding MW limb measurement to the multi-spectral synergetic retrieval using satellite observations
- We performed a sensitivity study of synergetic retrieval of tropospheric ozone profile using UV, TIR and MW measurements.

Observation scenario

 10^{1}

CEC / Jun. CEC / Dec.

ECS / Jun.

ECS / Dec.

- Follows the concept of the Japanese mission, Air POLLution Observation (APOLLO).
 - Platform = ISS (300 km height)
 - UV Nadir + TIR Nadir + MW Limb

Observation geometry of nadir (UV, TIR) and limb (MW)

UT

MT

LMT

10⁻⁵

Target area: East Asia

115

- One of the most serious ozone polluted area
- 4 cases (2 sites X 2 seasons) were assumed. (Total 20 atmospheric profiles)

140

Radiative transfer calculation setting

	UV Nadir	TIR Nadir	MW Limb	
Forward model	SCIATRAN	LBLRTM	AMATERASU	
Wavelength	305 – 340 nm	980 – 1080 cm ⁻¹	345 – 357 GHz, 639 – 651 GHz	
Spectral resolution	0.6 nm	~0.12 cm ⁻¹	25 MHz	
Sampling step	0.2 nm	~0.12 cm ⁻¹	25 MHz	
Sensitivity	S/N ~90 (300 nm), S/N ~2600 (340 nm)	S/N ~300	T _b ∼0.7 K (350 GHz band), T _b ∼1.7 K (645 GHz band)	
Cloud	No	No	No	
Aerosol	Basic background	No	No	
Scattering	Yes	No	No	
Emission	No	Yes	Yes	

Assumption:

- No bias between the three forward models (to investigate potential advantage)

- Spherically homogeneous atmosphere along the line-of-sight of MW measurement

- Thermal contrast (surface/atmosphere) < 1 K

- Time difference between the nadir and limb measurement was ignored.

• Optimal estimation method (OEM) [Rodgers, 2000] for the synergetic retrieval and the error estimation

DFS: Degree of freedom for signal The number of useful independent quantities there are in a measurement

$$DFS = \sum_{i=i_{min}}^{i_{max}} A[i, i]$$

PMS: Pressure of maximum sensitivity $PMS[i] = \mathbf{p}[where A[i, :] is maximum.]$

RRE: Reduction rate of error (from a priori error)

$$RRE = 1 - PCE_{retrieved} / PCE_{a priori}$$
 [%]

A: Averaging kernel Characterizing the sensitivity of the retrieved state (x) to the true state (\hat{x})

$$A[i, j] = \frac{\partial \hat{x}[i]}{\partial x[j]}$$

• Values of DFS for UV, TIR and their combination were compared.

	DFS _{UV}	DFS _{TIR}	DFS _{UV+TIR}	∆DFS	Def. LMT	
Our simulation	0.20	0.21	0.46	+128%	> 749 hPa	
OMI+TES [Fu et al., (2013)]	0.10	0.21	0.37	+139%	> 700 hPa	
GOME-2+IASI [Cuesta et al., (2013)]	0.08	0.20	0.29	+104%	< 3 km	
Simulation [Natraj et al., (2011)]	0.26	0.27	0.57	+115%	> 800 hPa	

Good agreement in relative DFS increase

Results: Degree of Freedom for Signal (DFS)

MW increased DFS in UT, MT and LMT. (MW alone has less sensitivity in MT and LMT.)

Upper Troposphere (UT)

- TIR, MW: dominant (MW depends on amount)
- For all profiles averaged, DFS (UV+TIR) = 0.62 ± 0.08 DFS (UV+TIR+MW) = 1.21 ± 0.28
- DFS was increased ~100% by adding MW.

Middle Troposphere (MT)

- DFS: TIR > UV >> MW (less information)
- For all profiles averaged, DFS (UV+TIR) = 1.00±0.09 DFS (UV+TIR+MW) = 1.23±0.13
- DFS was increased ~20% by adding MW.

Lowermost Troposphere (LMT)

- Same as the case in MT
- DFS was increased ~30% by adding MW.

Improvements in PMS and RRE are observed by adding MW measurement.

• Calculated for profile with enhanced ozone in LMT (CEC / Summer)

Enhanced peak of Averaging kernel in LMT

• Calculated for profile with low ozone amount in LMT (CEC / Winter)

Possibilities:

- Adding MW measurement: 30% increase in DFS of the LMT ozone
- Simulation for IASI-NG+UVNS shows: DFS of the LMT ozone = 0.75 (over land) [Constantino et al., 2017]

 \Rightarrow Possibility to derive the LMT ozone with DFS larger than 1 from space

• GEMS+MLS combination derives the surface ozone distribution from space over Asia with high spatial-temporal resolution.

Problems:

- Discrepancy in the forward model
 - Error in spectroscopic parameters (3~5% in MW, ~4% in UV/TIR)
 - Tangent height correction error for MW causes a discrepancy between the atmospheric layers in simulation and the true.
- Coincidence of MW limb measurement and UV/TIR nadir measurement

Our feasibility study to obtain vertically resolved tropospheric ozone profiles by synergetic retrieval using a combination of UV, TIR, and MW ranges shows:

- Increase of DFS values by ~100% (UT), ~20% (MT) and ~30% (LMT) by adding the MW measurements to the UV+TIR measurements
- Constraint of the stratospheric vertical ozone profile could be important for accurate estimate of the tropospheric ozone profile.
- Improvements in DFS, PMS and RRE were observed in several a priori settings ($\sigma_a = 100\%$, 50%, 30%, 20%, 10%).
- Improvement in the LMT ozone retrieval by adding MW measurement is obvious for the case of ozone enhancement in the LMT (as large as approximately 5×10^{21} m⁻²).

Contribution to Japanese missions (e.g., Air POLLution Observation (APOLLO) and air pollution prediction project in NICT).

High spatial-temporal resolution of GEMS observation potentially overcomes the coincidence problem.