Status of CEOS Air Quality Virtual Constellation and TEMPO

Jay Al-Saadi, NASA Langley Research Center Kelly Chance, Smithsonian Astrophysical Observatory

- AC-VC currently includes 3 activities: Air Quality, O₃ Trends, GHG
- Air quality trace gas (Ozone, NO₂, HCHO, SO₂) session
 - White paper on Geophysical Validation Needs for the AQ Constellation is proceeding on schedule for a complete draft in Q3 2017
 - Coordination of validation activities remains our most important objective as S5P is launched this year and the geostationary missions approach launch
 - Given that NASA and the EU now have open data policies, including Level-1b and Level-2, enabling constellation objectives for open data exchange now relies on data access policies for the Asian missions to be established

Air quality aerosol session

- A session was held to explore a potential AC-VC coordination activity for aerosol observations from space with application to air quality
- Participants expressed the need for developing a new constellation activity on air quality associated with aerosol, planned to be further explored in next AC-VC meeting
- Particular consideration will be given to possible leveraging of the next-generation operational GEO imagers (e.g., AMI on GK-2, ABI on GOES-16)

Talks and executive summary are available:

http://ceos.org/meetings/ac-vc-13/

Geostationary Constellation: TEMPO+GOES-R, GEMS and SENTINEL-4

- TOA Reflectance for 6 aerosol relevant channels
- 354, 388, 412, 470, 550, and 670 nm
- Radiative Transfer Model: VLIDORT
- Surface
- MAIAC BRDF Kernels
- Atmosphere
 - GEOS-5 Nature Run with GOCART aerosols

- Download TEMPO, GEMS, SENTINEL-4, and GOES-R synthetic data from http://g5nr.nccs.nasa.gov/
- data/OBS

GeoAQ Constellation Products

Product / Parameter	Common to the 3 GEOs	Comment	
Solar irradiance			
Earth radiance	305 to 490 nm		
Reflectance			
Ozone profile	stratosphere, troposphere, free troposphere, possibly 0-6 km	Differences in averaging kernels	
Ozone total column			
NO ₂ total column			
SO ₂ total column	Slant and vertical columns	Consider applying same algorithm to all missions	
HCHO total column			
СНОСНО			
NO ₂ tropospheric col.	tropospheric sub-column	Differences in separation of troposphere/stratosphere	
Aerosol	AOD, UV absorbing index	S4 joint retrieval with surface	

Inter-mission Bias Targets

CE

Product		Uncertainty*			Accuracy* of	Consistency* heritage	Proposed bias
		GEMS	S4	Тетро	method	data	target*
Solar in	rad		2-3%		2-4% consistency of ref spectra, direct comparison	2-5%	2%
Earth rad			2-3%		2% acc GSICS inter- cal factors	2-5%	3%
Reflect.			2-3%		2%	2-5%	3%
O ₃	total	3%	3%	3%	1-3%	<1% monthly zonal mean	1%
	strat	5%	-	5%			5%
	trop	20%	25%	10 ppbv			20%
	0-2km	-	-	10 ppbv	As of	AC-VC-13	
NO ₂	total	1x10 ¹⁵	-	1×10 ¹⁵	29 June 2	2017	1×10 ¹⁵
	trop	-	30%, 1.5×10 ¹⁵	1×10 ¹⁵		1-2×10 ¹⁵ (OMI-SCIA), bias in strat 0.5×10 ¹⁵	1×10 ¹⁵
SO ₂		1x10 ¹⁶	60%, 3×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
нсно		1x10 ¹⁶	50%, 1.5×10 ¹⁶	1×10 ¹⁶			1×10 ¹⁶
сносн	0		50%, 7×10 ¹⁴	4×10 ¹⁴			4×10 ¹⁴
AOD		20%, 0.1	-	0.05			0.05

* in molec/cm² uniess specified otherwise

Committee on Earth Observation Satellites

Issues and potential resolutions that may require SIT Chair support: AC-VC

Atmospheric Composition Virtual Constellation SIT Tech Workshop 2017 Agenda Item #21 *CEOS WP Section 3.8, VC-2, VC-3* CEOS Strategic Implementation Team Tech Workshop ESA/ESRIN, Frascati, Italy 13th-14th September 2017

- Enabling the Air Quality (AQ) Constellation objectives for open data exchange now relies on data access policies for the Asian missions to be established by their organizations
 - CEOS-endorsed AQ constellation position paper (2011) recommended "establishing protocols for mutual open and timely data distribution" to collaboratively enhance the quality of data products from all missions, thereby extending a global focus to the observations
 - Initial missions include Europe's S4 and S5P, USA's TEMPO, Korea's GEMS, and potentially China's Gaofen-5
 - NASA and the EU now have open data policies including L-1b and L-2
- Request CEOS actively engage (or continue) conversations with appropriate agencies in Republic of Korea and China to facilitate open sharing of satellite data between all partner space agencies

- The emergent AQ constellation includes hourly geostationary (GEO) observations over Europe, East Asia, and North America
- Requisite CO measurements are not currently planned anywhere;
 MTG IRS (Europe) and GeoCARB (US) will provide limited capability
- Air quality in the developing world is a growing societal challenge (increasing industrialization and population) with global impact
- Extending GEO observational capability to the southern hemisphere and tropics will leverage experience and capabilities from the emergent missions to be an effective capacity-building activity
- Encourage agencies to identify strategies to meet remaining AQ measurement goals, possibly including innovative funding and partnership approaches to build capacity in the developing world

- Constellations for observing air quality (AQ) and greenhouse gases (GHG) have developed separately but are highly interdependent
 - Similar emission sources (i.e., combustion) control AQ and GHG
 - o AQ affects natural carbon cycles, modulating net GHG abundances
 - Simultaneous AQ and GHG observations provide better constraints on emission fluxes and transformation, critical for policy strategies
- Atmospheric composition Observing System Simulation Experiment (OSSE) capability has matured rapidly
 - AC-VC is fostering AQ and GHG OSSE development with involvement of ECMWF, ESA, Copernicus, NASA, JAXA, NIER, and others
 - International objectives for both AQ and GHG observations could be achieved more effectively through coordinated planning
- Agencies should be encouraged to coordinate existing AQ and GHG OSSE capabilities to efficiently enable joint AQ/GHG satellite constellation studies

Tropospheric Emissions: Monitoring of Pollution

North American pollution measurements from geostationary orbit with **Tropospheric Emissions: Monitoring of Pollution** (TEMPO)

tempo.si.edu

Kelly Chance Smithsonian Astrophysical **Observatory**

> **GEMS Science Team** September 25, 2017

Hourly atmospheric pollution from geostationary Earth orbit

PI: Kelly Chance, Smithsonian Astrophysical Observatory Instrument Development: Ball Aerospace Project Management: NASA LaRC Other Institutions: NASA GSFC, NOAA, EPA, NCAR, Harvard, UC Berkeley, St. Louis U, U Alabama Huntsville, U Nebraska, RT Solutions, Carr Astronautics International collaboration: Mexico, Canada, Cuba, Korea, U.K., ESA, Spain

Selected Nov. 2012 as NASA's first Earth Venture Instrument

- Instrument delivery March 2018
- NASA will arrange hosting on commercial geostationary communications satellite with launch expected 2019 or later

Provides hourly daylight observations to capture rapidly varying emissions & chemistry important for air quality

- UV/visible grating spectrometer to measure key elements in tropospheric ozone and aerosol pollution
- Distinguishes boundary layer from free tropospheric & stratospheric ozone

Aligned with Earth Science Decadal Survey recommendations

- Makes many of the GEO-CAPE atmosphere measurements
- Responds to the phased implementation recommendation of GEO-CAPE mission design team

TEMPO

Tropospheric Emissions: Monitoring of Pollution

TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality and climate forcing in Greater North America.

9/22/17 North American component of an international constellation for air quality observations

TEMPO hourly NO₂ sweep

PO

4/10/17

NASA

mithsoniar

TEMPO instrument concept

Measurement technique

PO

- Imaging grating spectrometer measuring solar backscattered Earth radiance
- Spectral band & resolution: 290-490 + 540-740 nm @ 0.6 nm FWHM, 0.2 nm sampling
- 2 2-D, 2k×1k, detectors image the full spectral range for each geospatial scene

• Field of Regard (FOR) and duty cycle

- Mexico City/Yucatan, Cuba to the Canadian oil sands, Atlantic to Pacific
- Instrument slit aligned N/S and swept across the FOR in the E/W direction, producing a radiance map of Greater North America in one hour

• Spatial resolution

- 2.1 km N/S × 4.7 km E/W native pixel resolution (9.8 km²)
- Co-add/cloud clear as needed for specific data products

• Standard data products and sampling rates

- Most sampled hourly, including eXceL O₃ (troposphere, PBL)
- NO₂, H₂CO, C₂H₂O₂, SO₂ sampled hourly (average results for \geq 3/day if needed)
- Nominal spatial resolution 8.4 km N/S × 4.7 km E/W at center of domain (can often measure 2.1 km N/S × 4.7 km E/W)
- Measurement requirements met up to 50° for SO₂, 70° SZA for other products

TEMPO

Baseline and threshold data products

Species/Products	Required Precision	Temporal Revisit	
0-2 km O₃ (Selected Scenes) Baseline only	10 ppbv	2 hour	
Tropospheric O ₃	10 ppbv	1 hour	
Total O ₃	3%	1 hour	
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour	
Tropospheric H ₂ CO	1.0×10^{16} molecules cm ⁻²	3 hour	
Tropospheric SO ₂	1.0×10^{16} molecules cm ⁻²	3 hour	
Tropospheric C ₂ H ₂ O ₂	4.0×10^{14} molecules cm ⁻²	3 hour	
Aerosol Optical Depth	0.10	1 hour	

- Minimal set of products sufficient for constraining air quality
- Across Greater North America: 18°N to 58°N near 100°W, 67°W to 125°W near 42°N
- Data products at urban-regional spatial scales
 - Baseline ≤ 60 km² at center of Field Of Regard (FOR)
 - Threshold \leq 300 km² at center of FOR
- Temporal scales to resolve diurnal changes in pollutant distributions
- Collected in cloud-free scenes
- Geolocation uncertainty of less than 4 km
- Mission duration, subject to instrument availability
 - Baseline 20 months
 - Threshold 12 months

TEMPO status

- Currently on-budget and close to on-schedule
 - System Requirements Review and Mission Definition Review in November 2013
 - PDR on July 31, 2014
 - Now in Phase C (implementation): KDP-C April 10, 2015
 - Instrument CDR June 2015
 - Ground Systems CDR May 2016
 - Test Readiness Review August 2016
 - Currently undergoing assembly, integration, and test
- Select commercial geostationary satellite host 2018
 - TEMPO operating longitude and launch date are not known until after host selection
- Instrument delivery 3/2018 for launch 2019 or later, most likely in 2020 or 2021

Backup

New Challenges

- Temporal sampling of diurnal cycle
- Horizontal resolution (Sentinel-5P is a forerunner)
- Inter-mission consistency without geographic overlap
- Slant viewing and illumination angles
- Directionality of surface and atmosphere
- Geo-location knowledge
- Vertical distribution of constituents
- Near surface ozone (TEMPO)
- Stratospheric NO₂ correction (S4 lack of clean sector)
- High expectations wrt data quality and availability (→ FRM, QA4EO)