

Development status of GEMS Aerosol Retrieval Algorithm: Sensitivity Test

Mijin Kim, Jhoon Kim, Sang Seo Park , Ukkyo Jeong Yonsei University, Seoul, Korea

2013. 10. 14 – 17 GEMS Science Meeting

Contents

Status of GEMS Aerosol Algorithm

Retrieval accuracy analysis from reference test

- Angular dependency of retrieved AOD
- Retrieval sensitivity to aerosol type
- Retrieval sensitivity to aerosol height

Feasibility study for aerosol type and height retrieval

- Analysis of aerosol optical property over GEMS coverage area.
- Sensitivity of radiance spectrum to aerosol type.
- O2-O2 method for aerosol height retrieval.

Introduction - Aerosol-

Aerosol measurement has crucial role in the monitoring of climate changes.
The accurate aerosol information is one of the key parameter to detect gas and ocean/land surface information.
By using the correlation between AOD and PM concentration, the retrieved AOD from satellite measurement can provide the information of the surface air quality change over large area.

This image was made by compositing several days of TOMS data. [courtesy, PK Bhartia, NASA]

Concept of Aerosol Retrieval

Flowchart of Algorithm

LUT calculation

Aerosol model (From O. Torres & Jethva et al., 2011)	r_m1	r_m2	σ_m1	σ_m2	Real	Imaginary
Smoke	0.080	0.705	1.492	2.075	1.5	0.0, 6e-3, 1.2e-2, 2.4e-2, 3.6e-2, 4.8e-2, 5.8e-2 (354 nm) 0.0, 5e-3, 1e-2, 2e-2, 3e-2, 4e-2, 4.8e-2 (388 nm)
Dust	0.052	0.670	1.697	1.806	1.55	0.0, 1.3e-3, 2.6e-3, 5.6e-3. 8.3e-3, 1.3e-2, 2.3e-2 (354 nm) 0.0, 0.9e-3, 1.8e-3, 4.0e-3, 6.0e-3, 9.2e-3, 1.7e-3 (388 nm) Wavelength dependence
Sulfate	0.088	0.509	1.499	2.160	1.40	.0.0, 2e-3, 4e-3,6e-3, 8e-3, 1e-2, 1.2e-2

	Variable name	No. of entries	Entries
	Wavelength	6	354, 388, 412, 443, 477 nm
Radiative Transfer Model :	SZA	8	0.1, 10, 20, 30, 40, 50, 60, 70
VLIDORI	SAZA	8	0.1, 10, 20, 30, 40, 50, 60, 70
	RAA	11	0.1, 30, 60, 90, 120, 150, 160, 165, 170, 175, 180
	SUR	4	0.0, 0.05, 0.1, 0.2, 0.4
	AOD	5	0.0, 0.1, 0.5, 1.0, 2.5, 4.0
	Aerosol height	5	0.5, 1.5, 3, 6, 10 km
Contraction and all	Surface pressure	3	1014hPa, 700hPa, 473 hPa

1 1 0

Examples of calculated LUTs

Algorithm Reference Test Input Condition

Algorithm Reference Test Calculated Radiance [354 nm, 388 nm]

Algorithm Reference Test Output : AOD, SSA

Angular Dependency of Retrieval Accuracy

SZA = 0 ° ~ 70 °, 1 ° VZA = 12.0 ° RAA = 33.0 ° Surface elevation = 0.0 km Surface albedo [354 nm, 388 nm] = [0.068, 0.0665] *Reference AOD = 0.7 Reference SSA = 0.8856 (Smoke), 0.9046 (Dust), 0.9513 (Sulfate)*

1.0

AOD retrieved from Online Calculation P8. Jeong et al.

LUT Calculation with Fine Angular Resolution

Variable name	No. of entries	Entries
Wavelength	6	354, 388, 412, 443, 477, 490 nm
SZA	10	0.01, 5, 10, 15, 20, 30, 40, 50, 60, 70
SAZA	10	0.01, 5, 10, 15, 20, 30, 40, 50, 60, 70
RAA	11	0.01, 15, 30, 45, 60, 80, 100, 120, 140, 160, 180
SUR	4	0.0, 0.05, 0.1, 0.2, 0.4
AOD	5	0.0, 0.1, 0.5, 1.0, 2.5, 4.0
Aerosol height	5	0.5, 1.5, 3, 6, 10 km
Surface elevation	3	0, 3, 6 km

Algorithm Reference Test Output: AOD, SSA - new result : Fine angular resolution -

Angular Dependency of Retrieval Accuracy with fine angular resolution

SZA = 0 ° ~ 70 °, 1 ° VZA = 12.0 ° RAA = 33.0 ° Surface elevation = 0.0 km Surface albedo [354 nm, 388 nm] = [0.068, 0.0665] *Reference AOD = 0.7 Reference SSA = 0.8856 (Smoke), 0.9046 (Dust), 0.9513 (Sulfate)*

Aerosol Retrieval Sensitivity to Aerosol Type

Aerosol Retrieval Sensitivity to Aerosol Height

SSA error, aerosol peak height arror [%]= 30.

120

120

1.0

110

110

-1.0

100

100

-3.0

8

2

C

-5.0

max. diff [%]: 1.21 min. diff [%]: -0.79

140

6

မ္မ

20

10

140

5.0

130

130

3.0

SSA Retrieval Error -2.08% ~ 1.21%

Feasibility Test for Aerosol Type Selection

Retrieved Aerosol Height. 2008.03.02 – Elevated Dust (P9. Park et al.)

Aqua MODIS RGB - 03/02/2008

Dust aerosol is elevated above PBL.

Summary of Error Analysis

Error source	Error source [unit : m]	MITR	WASO	СОРО
- AOD : AOD $\uparrow^{+} \rightarrow O_{4}$ SCD \downarrow^{-} (Shielding effect)	$AOD \\ (\Delta AOD = 0.2)$	193±109	182±102	201±116
- SSA : SSA $\uparrow \rightarrow$ Scattering $\uparrow \rightarrow O_4$ SCD \uparrow	SSA (10% change)	1068±914	2373±1882*	488±436*
- Albedo: High albedo \rightarrow O ₄ SCD \uparrow	Surface Albedo $(\Delta \alpha = 0.01)$	93±185	89±126	252±571
-Aerosol vertical distribution	Aerosol vertical distribution	1843±4570	1884±2172	928±3332
Exponential vs Gaussian (MITR)	Atmospheric Gases		< 10	
Exponential vs Box-shape (WASO,COPO)	O_4 cross section Instrument (Shift : 0.02 nm)	Negligible	1.7% (O ₄ SCD) < 10	
	Total Error [unit : %]	28.2	56.6	22.9

*Aerosol Model : MITR (for dust), WASO (for non-absorbing), COPO (for absorbing) (Hess et al., 1998) – OPAC Aerosol Model

Aerosol Type over the Asia Obtained from AERONET inversion data

AEA MINIS

MENT

AOP over the Asia Obtained from AERONET inversion data

	r _{m1}	r _{m2}	σ_{m1}	σ_{m2}	Real [440 nm]	lm. [440 nm]	SSA [440 nm]	Fine mode Contribution	AAE 440-675 nm
BC	0.0801	1.0049	1.6435	1.8485	1.45	0.01360	0.9011	0.99972	1.309
Dust	0.0648	0.8320	1.4507	1.8200	1.52	0.00515	0.8874	0.99778	1.858
Mix	0.0804	0.9212	1.4305	1.8847	1.47	0.00859	0.8825	0.99929	1.440
NA	0.0868	0.7414	1.7718	1.9761	1.41	0.00403	0.9657	0.99972	1.194

Summary and On-going issues

- GEMS aerosol retrieval algorithm is constructed based on the OMI UV algorithm.
- By using the calculated radiance from radiative transfer model, VLIDORT, the retrieval accuracy was estimated.
 - Coarse resolution of solar angle in the LUT causes the large error in AOD retrieval, in large scattering angle area. [Error : -14.69% ~ 11.63%]
 - The retrieval error is significantly reduced by calculating LUT with fine angular resolution.
- Underestimation of aerosol height related to overestimation and underestimation of AOD and SSA, respectively.
 - O4 algorithm also has large sensitive to accuracy of AOD.
 - Combining AOD algorithm and O4 algorithm is key issue in this study.
- Aerosol type selection is important to retrieve aerosol information, and this study planned to select aerosol type by using difference of spectral shape in visible range.
 - Analyzed AOP over ASIA will₃be applied to AOD retrieval.

Thank You ©

Mijin Kim : mysky0110@yonsei.ac.kr Sang Seo Park : pss8902@yonsei.ac.kr Ukkyo Jeong : wukkyo@yonsei.ac.kr

Algorithm Test with OMI products AOD

Given condition : Normalized Radiance [354 nm, 388 nm], aerosol type, aerosol height, surface albedo, surface pressure

Algorithm Test with OMI products SSA

Given condition : Normalized Radiance [354 nm, 388 nm], aerosol type, aerosol height, surface albedo, surface pressure

Algorithm Test with OMI products

Location : Yonsei University, Pusan_NU, Gwangju_GIST Period : 2012. 03. 01 ~ 05. 31 (2012DRAGON Campaign) Given condition : Normalized Radiance [354 nm, 388 nm], aerosol type, aerosol height, surface albedo, surface pressure

Aerosol Classification Method (Lee et al., 2010)

