8-10 October 2012, Seoul, Korea

Geostationary Environment Monitoring Spectrometer (GEMS) to monitor air quality and short-term climate forcer(SLCF) over Asia

Jhoon Kim^{1,2}, GEMS Science Team

¹ P.I. GEMS, Yonsei University ² Director, GESC(Global Environment Satellite Center)

Outline

- Introduction
- GEMS Mission

Summary

Improving Air Quality and Limiting Short-Term Climate Changes

Global Environment

Satellite res. Center

RIO+20 UN Conference on

Sustainable Development (UNCSD)

MINISTRY

20-22 June, 2012 Achim Steiner, UNEP Executive Director

"Need action on SLCFs, black carbon, tropospheric ozone, and methane..."

rropospheric Ozone (UNEP/WMO) 20

Satellite Remote Sensing of Atmospheric Composition

Satellit e		ERS-2	Terra	Envi	isat		Aura		ME	METOP GOSAT		S-4, G-CAPE
Sensor s	TOMS	GOME	MOPITT	SCIA- MACHY	MIPAS	HRDLS	ОМІ	TES	IASI	GOME2	TANSO	GEMS GMAP- Asia
Orbit	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	LEO (GEO
Launch	1979	1995	1999	2002	2002	2003	2003	2003	2007	2007	2009	(2018)
O ₃	0	0		0	●	0	0	0	O, ●	0		0
H ₂ O	0	0		0		0		0				
СО			0	0	•				0			
NO				0	•	0						
NO ₂		0		0	•	0	0		0	0		0
HNO ₃					•	0		0	•			
CH ₄			0	0	•	0		0	0		0	
нсно		0		0								0
SO ₂		0		0			0			0		0
BrO		0		0						0		
CO2				0					0		0	
Aeroso I	0			0		0	0	0		0		0

0

: Column

: Profile GEO : Geostationary (Courtesy, C.H. Song)

PS : Polar sun-synchronous

Global Environment Satellite res. Center

LEO satellite vs. GEO(COMS, Launched on June 26, 2010)

Hourly AOD, FMF, Aerosol type

1 GEO (hourly)

2 LEOs (2 x 1/day)

Global Environment Satellite res. Center

GOCI 2012/5/6

GOCI RGB - 06/05/2012 00:16

GOCI AOD - 06/05/2012 00:30

National Space Program of Korea

8

GEMS

(Geostationary Environment Monitoring Spectrometer)

- GeoKOMPSAT-2A: AMI
- GeoKOMPSAT-2B: GEMS
 GOCI-2

• Project period: 2011 – 2018

Major specification

	Specification
Lifetime	> 7 yrs
Spatial coverage	5000 km x 5000 km (5° S ~ 45° N)
Duty cycle	8 times / 1 day
Spatial resolution	7 km (NS) @ Seoul
Spectral coverage	300 – 500 nm
Spectral resolution	0.6 nm
Products	O_3 , NO_2 , SO_2 , HCHO, aerosol, cloud, surface reflectance
Optional IR payload	Under discussion (NASA EV-I, Japan) - spectral coverage: 2~5 um - Products: CO ₂ , CH ₄ , CO

Projected FOV & GSD - NS GSD @ Seoul : 7.0km

Satellite mission for atmospheric environment

Instru- ment	Detect- ors	Spectral Coverage [nm]	Spectral Resolution [nm]	Ground Pixel Size [km²]	Global Coverage
GOME (1995- 2003)	Linear Arrays	240-790	0.17	40×320	3 days
SCIAMACHY (2002- 2012)	Linear Arrays	240-2380	0.26	30×60	6 days
OMI (2004-ongoing)	2-D CCD	270-500	0.42	13×12	daily
GOME-2 (2006-ongoing)	Linear Arrays	240-790	0.24	40×40	1.5 to 3 days
GEMS	2-D	300-500	0.6	~7×8	Hourly

[Courtesy, R.J. Park]

- SCIA suites of atmospheric gases measured for 10 years
- OMI higher spatial resolution, better coverage
- GOME-2 better spatial resolution, better coverage, continuity for 15 years

Geostationary

- better spatial resolution, several measurements per day
- less cloud contamination
- can overcome the limitation in global coverage by constellation

Objective: Measurement of air quality and SLCF in high temporal and spatial resolution

Global Environment Satellite res. Center

Satellite res. Center

Baseline products

Product	Importanc e	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accuracy	Spectral window (nm)	Spatial Resolution (km ²) @ Seoul	SZA (deg)	Retrieva I
NO ₂	Ozone precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵	425 - 450	56	< 70	DOAS
SO ₂	Aerosol precursor	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶	310 – 330	56 x 4 pixels	< 50 (60*)	DOAS
нсно	Proxy for VOCs	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶	327 – 357	56 x 4 pixels	< 50 (60*)	DOAS
O ₃	Oxidant, pollutant	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	2% or 6 DU (TOz)	300-340	56	< 70	OE
AOD (AI, AOCH, AAOD)	Air quality, Climate	0 (AOD)	5 (AOD)	0.2	20% or 0.1@ 400nm	300-500	56	< 70	Multi- spectral
Clouds	Data quality, climate	0 (COD)	50 (COD)	17 (COD)		300-500	56		Raman, O ₂ -O ₂
Surface Property	Environ- ment	0	1	-		300-500	56		Multi- spectral

Spectral resolution

Spatial Resolution - cloud contamination

COD frequency distribution

Relative frequency (in %) of cloud optical thickness without using the IR-Visible decoupling method (i.e. base COMS products), using the decoupling method (i.e. final COMS products), and MODIS data to the total clouds for the corresponding conditions. SH and NH stand for the northern and southern hemispheres, respectively

(Choi and Ho, 2009, IJRS).

Global Environment Satellite res. Center

20

10

0~1

1~2

2~3 3~4 4~9 9~2525~60 60~

Cloud optical thickness

Baseline Data Products of Met-Imager (16-Channel)

Wavelength Micrometers	0.47	0.64	0.865	1.378	1.61	2.25	3.90	6.185	6.95	7.34	8.5	9.61	10.35	11.2	12.3	13.3
Channel ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Aerosol Detection	X	X	X	X	X	X	X							X	X	
Suspended Matter/OD	X	X	X		X	X										
Clear Sky Masks		Х		X	X		X		X	X	X			X	X	
Cloud & Moisture Imagery	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Cloud Optical Depth		X				X	X							X	X	
Cloud Particle Size		X				X	X							X	X	
Cloud Top Phase										X	X			X	X	
Cloud Top Height														X	X	X
Cloud Top Pressure														X	Х	X
Cloud Top Temperature														X	X	X
Hurricane Intensity													Х			
Rainfall Rate/QPE								X		X	X			Х	X	
Legacy Vertical Moisture Prof ile								X	x	x	X	x	x	X	x	x
Legacy Vertical Temp Profile								X	X	X	X	X	X	X	X	X
Derived Stability Indices								X	X	X	X	X	X	X	X	X
Total Precipitable Water								X	X	X	X	X	X	X	X	X
Downward Solar Insolation S urf	x	x	x		x	x										
Reflected Solar Insolation TO A	х	x	x		x	x										
Derived Motion Winds		X					X	X	X	X				X		
Fire Hot Spot Characterizatio n		x					X							x	x	
Land Surface Temperature														X	X	
Snow Cover	X	X	X		X	X	X						X			
Sea Surface Temps							X			(Co	ouřte	sv. K	MÅ)	X	X	8
🖊 🍼 🛰 Satellite res. Ce	nter												110		FNM	DONMER

Hourly Operation Schedule Scenario(draft) of Met-Imager

Input Radiance for different CODs

Current Status of GEMS Requirements(4/4)

Input radiance level

Spectral Range (nm)	Minimum Radiance ¹ [W m ⁻² sr ⁻¹ mm ⁻¹]	Nominal Radiance ² [W m ⁻² sr ⁻¹ mm ⁻¹]		Maximum [W m ⁻² sr	Signal to Noise Ratio ³	
		Goal	Threshold	Goal (COD=50)	Threshold (COD=30)	
300-315	0.15	4.926	7.98	24.52	23.94	160@305 320@310 630@315
315-325	0.61	30.41	43.36	133.99	131.25	720
325-335	2,27	63.766	86.63	264.90	260.18	
335-357	3.52	65.234	91.39	289.59	283.61	
357-423	4.40	71.562	108.66	393.05	384.59	
423-451	5.14	86.358	130.75	516.75	505.24	1500
451-500	5.11	103.744	145.49	605.40	592.35	1500

Intercomparison of Nominal Radiance and SNR

	G	EMS		GEOCAPE			Sentinel-4			
Wave-	Nominal Radiance		SNIP	Wave-	Closest	SND	Wave-	Closest	SND	
Lengui	Goal	Threshold	ONIX	length	Nominal	SINIX	lengin	Nominal	SINIX	
300-315	4.926	7.98		305-330	33.5		305 310 315	1.10 2.90 18.0	160 320 630	
315-325	30.41	43.36	720@320				320	30.9	900	
325-335	63.766	86.63	Linearly	320-329	54.3					
335-357	65.234	91.39	Interpolate e	327-356	53.3		350	70.9	1000	
357-423	71.562	108.66	nes				400	91.4	1200	
423-451	86.358	130.75	1500@430	423-451	67.3		450	101	1400	
451-500	103.744	145.49	1500				500	73.1	1400	
Measurement time: 30 min				Measurement time : 1 hour			Measurement time : 1 hour			

Retrieval Geometry

-0.00 10.00 20.00 30.00 40.00 50.00 80.00 70.00 80.00 90.00

.0.00 30.00 40.00 50.00 50.00 70.00 80.00

SNR Requirements

Wavelength s (nm)	SNR	Related gas	Uncertainty (cm ⁻²)	SZA (deg)	Remark
315-325	1500* 720	SO ₂	1.0 x 10 ¹⁶ 3.3 x 10 ¹⁶	60	ҮЈК, КС
327-356	1394* 1500* 720	НСНО	1.0×10^{16} 1.0×10^{16} 2.1×10^{16}	50 70	КС ҮЈК, КС
423-451	2049* 1500	NO ₂	1.0 x 10 ¹⁵ 1.5 x 10 ¹⁵	70	ҮЈК, КС
433-465	1931* * <mark>Sp</mark>	CHOCHO atial coaddin	4.0×10^{14} g is required to	50 increase t	KC he SNR.

Cf. Kelly Chance (2011), Y.J. Kim

Option to increase SNR

- 1. Request larger volume and mass budget.
 - Takes longer time. Requested to system engineer at KARI.
 - \rightarrow not realistic at this stage?
- 2. Request for longer observation time
 - $30\min \rightarrow 45\min \dots$ (not an option at this moment)
 - Mechanical disturbance needs to be minimized and characteristics should be provided to GOCI and system engineer
- 3. Lower spatial resolution
 - $7 \times 8 \text{ km}^2 \rightarrow 14 \times 8 \text{ km}^2 \dots \rightarrow 28 \times 8 \text{ km}^2$
- 4. Reduce E-W Scan coverage
 - 5,000 km \rightarrow 4,000 km \rightarrow ... 3,000 km (@winter or local mode)
 - Need mechanism to have adaptable scan speed

Operation mode

Оре	eration mode	Observation Freq. (min)	E-W Scan coverage (@lat. of Seoul)
	Normal	60*	75 E – 145 E (70 deg wide)
Special	EA(East Asia)	60*	110 E – 140 E (30 deg wide)
	EEA(Enhanced East Asia)	60*	115 E – 130 E (15 deg wide)
	LA(Local Area)	< 30	In emergency by ground command

 Imaging time 30 minutes + Transmission 30 minutes to avoid mechanical disturbance with GOCI-2

Current Status of GEMS Requirements(1/4)

System Attributes	Requirements
Lifetime	> 7 years [option : >10 years]
Reliability	> 0.85 @EOL
Field of regard	 > 5000 km (N/S) × 5000 km (E/W) N/S range : 45°N~5°S E/W range : selectable between 75°E~145°E Orbital position :116.2E<pos.<128.2e< li=""> </pos.<128.2e<>
Duty cycle / Imaging time	8 images during daytime (30 min imaging + 30 min rest) × 8 times / day
Ground sampling distance	< 7 km (N/S) at Seoul GSD area < 56 km ² at Seoul (Aspect Ratio shall be less than 1:3)

Current Status of GEMS Requirements(2/4)

System Attributes	Requirements
Spectral range	300 nm to 500 nm
Spectral resolution	< 0.6 nm
Spectral sampling	< 0.2 nm
Signal-to-noise ratio	> 720 @ 320nm > 1500 @ 430nm
Data quantization	\geq 12 bits
MTF (instrument level)	> 0.3 in N/S direction @Nyquist frequency > 0.3 in E/W direction @Nyquist frequency
Imaging navigation	1 pixel
Pointing stability*	48 microrad/2s
Pointing accuracy	0.02 deg

*For standard operation

Current Status of GEMS Requirements(3/4)

System Attributes	Requirements
Radiometric calibration accuracy	< 4% (including lamp uncertainty)
Spectral calibration Accuracy	< 0.02 nm
Spectral calibration stability	< 0.02 nm (within 24hr)
Polarization factor	< 2% (310-500nm) No inflection point within 20nm for all the wavelength range
Spectral Feature	< 0.05% (within 3 nm)
Stray Light	< 2% (310-500 nm)

CEOS (Committee on Earth Observation Satellites)

Constellation of GEO Mission to study Air Quality and Clima

ENVIRONMENT

Summary

- GEMS, a geostationary mission is expected to contribute monitoring ai r quality and SLCF in Asia in high temporal and spatial resolution.
 - UV-Vis observations will allow a common set of tropospheric column prod ucts to be produced over the industrialized Northern Hemisphere at ~8 km spatial resolution and 1 hour refresh

• O_3 NO₂ HCHO SO₂ AOD (possible CO, CH₄, and CO₂?)

- Aerosol detection in the UV will allow absorbing aerosol to be distinguish ed from total AOD, providing information on aerosol speciation and import ant to the air quality/climate interface
- GEMS can contribute to understand the globalization of pollut ion events, source/sink identification, and long-range transpo rt of pollutants and SLCD, as a part of the CEOS ACC.
- User requirements have been finalized and is reflected in the RFP which shall be issued soon.
- Coordinated efforts among scientists around the world are de sirable in defining requirements, developing algorithm, proce ssing data, and future applications.

Acknowledgement

Ministry of Environment (MoE), Rep. of Korea NIER, MoE KEITI, MoE

Ministry of Education, Science & Technology (MEST) KARI

GEMS Science Team