A feasibility study for SO² detection from space - part of study for GMAP-Asia -

Hitoshi Irie

Center for Environmental Remote Sensing (CEReS) Chiba University, Japan

Overview of our feasibility study

Irie, A feasibility study for SO2 detection from space, GEMS workshop, Seoul, October 9, 2012

Simulation by a RTM

We use our RTM, **JACOSPAR**, which was developed based on its predecessor **MCARaTS** (Iwabuchi, 2006). MCARaTS was validated by an international RTM intercomparison study for **MAX-DOAS** geometries (Wagner et al., 2007).

Observation of the atmosphere over Tokyo (35.7ºN, 139.7ºE).

A GEO satellite assumed be located at 36,000 km the Equator at 120°E.

Four geometries covering summer/winter and 12:00/15:00 local times.

Assumed profiles of trace gases

Creating synthetic spectra from simulated radiances

DOAS analysis

T

i i i

 $\mathbf{x}_{i+1} = \mathbf{x}_i + (\mathbf{K}_i^T \mathbf{S} \mathbf{K}_i + \gamma_i \mathbf{D})^{-1} \mathbf{K}_i^T \mathbf{S} [\mathbf{y} - \mathbf{F} (\mathbf{x}_i)]$

1 *i* $\epsilon \ln(I^{}_0(\lambda) - c(\lambda)) - \sum \sigma^{}_i(\lambda) \Delta {\rm SCD}^{}_i -$

 $\ln I(\lambda) = \ln(I_0(\lambda) - c(\lambda)) - \sum \sigma_i(\lambda) \Delta \text{SCD}_i - p(\lambda)$

T

- Levenberg-Marquardt method: $\mathbf{x}_{i+1} = \mathbf{x}_i + (\mathbf{K}_i^T \mathbf{S} \mathbf{K}_i + \gamma_i \mathbf{D})^{-1} \mathbf{K}_i^T \mathbf{S} [\mathbf{y} \mathbf{F}(\mathbf{x}_i)]$
- Forward model:
- Fitting window:
	- $-$ 314-327 nm for UV O₃ and SO₂
- Degree of offset polynomial : 2^{nd} (i.e., $c(\lambda) = a_0 + a_1 \lambda + a_2 \lambda^2$)
- Degree of polynomial : 3^{rd} (i.e., $p(\lambda) = b_0 + b_1 \lambda + b_2 \lambda^2 + b_3 \lambda^3$)

Precision estimate

- \triangleright For each geometry and each SNR given, 200 synthetic spectra containing different random noises are analyzed by DOAS.
- \triangleright The mean and its 1 σ standard deviation for 200 SCDs retrieved are calculated.
- \triangleright The 1 σ standard deviation is regarded as the precision.

Precision for O³ SCD vs. SNR (UV)

Irie et al. (2012)

- We found clear relationships between the precision(ϵ) and SNR.
- For example, the precision and SNR are linked by the equation log(ε) = -1.06·log(SNR) + 20.57

for O_3 observations in the UV region at a FWHM = 0.6 nm and SR = 4.

• Better precision at better FWHM and larger SR (sampling ratio).

How to use the equation: example of the application to GMAP-Asia

- For GMAP-Asia, the precision required to detect high-ozone events in PBL has been tentatively set to **50 ppbv** (extra-success case).
- This corresponds to a change in **O³ VCD by 2.5**×**10¹⁷ molec. cm-2** or a change in **O³ SCD by 1.25**×**10¹⁷ molec. cm-2 (box-AMF at 1 km is about 0.5)**.

- The change in SCD is regarded as ε.
- Putting the ε into the equation $log(\epsilon) = a \cdot log(SNR) + b$ (where a=-1.06 and b=20.57 for FWHM=0.6 and SR=4), we can obtain the required SNR.

Results for SO₂

FWHM=0.4 nm FWHM=0.6 nm

For SO² , clear relationships between the precision(ε) and SNR are also seen!

SNRs corresponding to the requirements

This study

Requirement PBL SO₂ = 10 ppbv SO_2 VCD = 5.0x10¹⁶ molec. cm⁻² SO_2 SCD = 2.5x10¹⁶ molec. cm⁻²

SNR(@320nm) 800 for FWHM = 0.4 nm **900** for FWHM = 0.6 nm

Requirement PBL SO₂ = 4 ppbv SO_2 VCD = 2.0x10¹⁶ molec. cm⁻² SO_2 SCD = 1.0x10¹⁶ molec. cm⁻²

SNR (@320nm) 1900 for FWHM = 0.4 nm **2400** for $FWHM = 0.6$ nm

※SNR(@320nm) converted from SNR(@330 nm)

KC and GIST

Requirement $PBL SO₂ = 13$ ppbv

Requirement PBL SO₂ = 4 ppbv **SNR (@320nm) 732** for FWHM = 0.6 nm

SNR (@320nm) 1750 for FWHM = 0.6 nm

