Updated Aerosol-Explicit POMINO Algorithm for Trace Gas Retrievals for OMI and TropOMI: Possible Collaborations with GEMS Teams

Jintai Lin 林金泰, Mengyao Liu 刘梦瑶 ACM Group, Peking University

linjt@pku.edu.cn http://www.phy.pku.edu.cn/~acm/

ACM Group, Collaborators and Funding

- Group: Y.-Y. Yan, R.-J. Ni, M.-Y. Liu, J.-X. Wang, L.-L. Chen, H.-J. Weng, Z.-W. Wang, H. Kong, Y.-Z. Cui...
- China: Q. Zhang, K. He, Y. Zhao, Y. Lei, P. Wang...
- N.A.: S. Davis, D. Streets, D. Wuebbles, M. McElroy, C. Nielsen, R. Spurr, R. Martin...
- Europe: D. Guan, Z. Liu, K.F. Boersma, M. van Roozendael...
- Funding: NSFC 41005078, 41175127, 41422502...

High-Resolution Geostationary and Polar Orbiting Satellite Measurements of NO₂ and Other Tracers

NO₂ sensors so far: GOME, SCIAMACHY, OMI, GOME-2A/B, TropOMI

NO₂ Retrieval Algorithm

Step 1: SCD from DOAS calc. Step 2: Stratospheric NO₂

Step 3: Tropospheric AMF – *most important*

- **–** Surface albedo; Surface air pressure
- Aerosol absorption and scattering
- Eff. cloud fraction and cloud top pressure
- Vertical profile of NO₂

SCD = F(radiance) TSCD = SCD - SSCD TVCD = TSCD / AMF

Prevailing NO₂ algorithms:

- Implicitly accounting for aerosol optics
- Inconsistent ancillary assumptions between NO₂ and cloud products
- (Typically) no geometric dependence of surface reflectance
- (Often) coarse-resolution NO₂ profile
- Use of look-up table

POMINO algorithm:

- Explicitly accounting for aerosols
- Same ancillary assumptions in retrieving NO₂ and clouds
- Accounting for surface reflectance anisotropy
- High-resolution NO₂ profile
- RTM calculation for each pixel

http://www.phy.pku.edu.cn/~acm/acmProduct.php#POMINO

POMINO – Peking University OMI NO₂ Product

http://www.phy.pku.edu.cn/~acm/acmProduct.php#POMINO All Level-2 and Level-3 data are freely available

Features:

- Explicit aerosols
- Coherent clouds
- Anisotropic Rs
- High-res NO₂ prof.
- Pixel-specific RTM

Lin et al., 2014 ACP; Lin et al., 2015 ACP; Liu et al., 2018 AMTD

NO₂ Retrieval Algorithms for OMI

	DOMINO v2	POMINO v2
RTM	DAK v3.0 (polarized, parallel atmosphere)	LIDORT v3.6 (un-polarized, curved atmosphere)
Calculation for individual pixels	Interpolated from a look- up table	Pixel-specific radiative transfer modeling; no look-up table
Surface reflectance	OMLER v1 (3-year average; 0.5⁰)	BRDF; MCD43C2 Collection 6 (0.05 ^o)
Surface pressure	TM4 (3° lon x 2° lat); adjusted by elevation	Nested GEOS-Chem (25–50 km); adjusted by elevation
Cloud fraction	OMCLDO2 v1.1.1.3; by look-up table	Derived here
Cloud pressure	OMCLDO2 v1.1.1.3; by look-up table	Derived here
Aerosol optics	Treated implicitly as 'effective' clouds	GEOS-Chem simulations; AOD is adjusted by MODIS, and aerosol vertical profile by CALIOP monthly climatology
Pressure levels, temperature profile, and NO ₂ vertical profile	TM4 (3° lon x 2° lat; 34 layers with ~ 5 layers below 1.5 km)	Nested GEOS-Chem (25–50 km; 47 layers with ~ 10 layers below 1.5 km) 6

Cloud Retrievals From OMI

	OMCLDO2 v1.1.1.3	POMINO v2
RTM	DAK v3.0 (polarized, parallel atmosphere)	LIDORT v3.6 (un-polarized, curved atmosphere)
Calculation for individual pixels	Interpolated from a look-up table	Pixel-specific radiative transfer modeling; no look-up table
Surface reflectance	OMLER v1 (3-year average; 0.5 ^o)	BRDF; MCD43C2 C6 (0.05º)
Surface pressure	Interpolated from a fixed pressure-height relation (midlatitude summer profile)	Nested GEOS-Chem (25–50 km); adjusted by elevation
Aerosol optics	No aerosols	GEOS-Chem simulations; AOD is adjusted by MODIS C6, and aerosol vertical profile by CALIOP monthly climatology
Pressure levels and temperature profile	Fixed dependence on height (midlatitude summer profile)	Nested GEOS-Chem (25–50 km; 47 layers with ~ 10 layers below 1.5 km)

Complex Effects of Aerosols on Cloud Retrieval

Cloud Fraction

Cloud Pressure

Cloud Radiance Fraction

with Aerosols

w/o Aerosols

10

20 40 100 x 0.01

with Aerosols

w/o Aerosols

700

900

1100 hPa

with Aerosols

w/o Aerosols

0 5 10 15 20 25 30 35 40 45 50 x 0.01

Lin et al., 2014 ACP; Lin et al., 2015 ACP; Liu et al., 2018 AMTD

500

300

Explicitly Accounting for Aerosols is Critical

Constraining Model Aerosol Profile by CALIOP

Aerosol extinction profile standardized by maxima of the profile (Northern East China, 2012)

Correcting Aerosol Profile Increases NO₂ VCD by ~ 15% Averaged over East China in 2012

Comparison with MAX-DOAS Data

250 250 Number: 49 Number: 49 Intercept: -1.24 Intercept: -0.05 : 0.96 slope slope : 0.82 200 H 200 \mathbb{R}^2 : 0.89 R^2 : 0.86 : -3.7% NMB NMB : -10.4% POMINO v1.1 POMINO 150 150 **POMINO** POMINO v1.1 **MODIS AOD MODIS AOD** 100 100 **CALIOP** Profile + -50 50 0 0 50 100 150 200 250 50 150 200 250 0 0 100 MAX-DOAS MAX-DOAS 250 250 Number: 49 Number: 49 Intercept: -7.60 Intercept: 0.72 slope : 0.66 slope : 1.24 200 200 : 0.75 \mathbb{R}^2 : 0.82 \mathbb{R}^2 **DOMINO v2** NMB : -1.2% NMB : -22.7% **QA4ECV** ONIWOO 2 150 No aerosols Satellite data ensemble 100 100 No aerosols 50 50 n 0 50 100 150 200 250 0 50 100 150 200 250 MAX-DOAS MAX-DOAS

Explicit Aerosol Representation Reduces Sampling Low Bias by Better Accounting for Polluted Days?

0 2 4 0 0 10 12 14 10 10

Cloud Radiance Fraction

POMINO (with AER)

noAER

) 5 10 15 20 25 30 35 40 45 50 x 0.01

Initial Result for TROPOMI NO₂ Retrieval

2017/11/25

Liu et al., in prep

Global-Multi-Regional Multi-layer Two-Way Coupled Model System to Interpret Satellite Data

Yan et al., 2014 ACP; Yan et al., 2016 ACP; Ni et al., 2018 ACP

Summary

- POMINO NO₂ has several important features suitable for East Asia, in both clean and polluted situations.
- POMINO can also be applied to SO₂, HCHO and CHOCHO.
 We intentionally made the code easily extensible.
- We look forward to collaborating with GEMS teams on trace gas retrievals and model simulations.

<u>linjt@pku.edu.cn</u> <u>http://www.phy.pku.edu.cn/~acm/acmProduct.php#POMINO</u>