The 8th GEMS Science Team Meeting, September 25th-27th, 2017

GEMS[•]Ground System and Application

Jongmin Yoon

National Institute of Environmental Research, Korea

GEMS data processing

- EGS, KARI, and KIOST will operate GK2B Satellite and they have each role of data processing.
 - ➢ KARI is the SOC of GK2B and observation schedule is offered by EGS and KIOST
 - EGS is the data processing center of GEMS, getting raw data from a antenna and performing data production, distribution, and analysis
 - The first backup center of GEMS is KARI for Level1B and the second is KIOST for RAW data
- AMI(KMA) and GOCI-2(KIOST) satellite data will be shared to improve GEMS level2

Operational	Explanation								
Concept									
	Non-stop Operating ground station for 24hours and 365days								
Non-stop	Securing stability and non-stop automation through active-active high stability multiplexing								
Operation	Constructing an operation system in emergencies and at all times								
	Establishment of back-up system for each sub system								
Real-time	Acquisition in real-time and distribution in near-real-time								
	Distribution within 1hour after receiving RAW data								
Service	Improvement of processing efficiency through algorithm parallelization								
Operation	Operating 10 years according to designed duration of GK2B operation								
for 10years	Considering expansion possibilities of hardware, software, network, and new facilities								
Data	Archiving all data in main storage, that is received and produced								
archive	Building storage system that can expand and meet storage requirements								
Back-up system	Setting up back-up system for data reliability								
	Non-stop Operating with rapid substitution in case of failure								
	Establishment of back-up system to meet system operation concept and requirements								
High	Achieving 99% or more operational availability for high-speed processing and customized								
Availability	services with Hot backup system								

Operation Mode

Operation Mode	Explanation							
Normal Mode	Basic operation mode							
Active Mode	 Processing automatically a series of processes such as receiving RAW data, preprocessing, processing, archiving, and distribution according to the GEMS observation schedule 							
Standby Mode	 Performing post processing, reprocessing, maintenance of system, and algorithm update 							
Abnormal Mode	In case of error							
Space Segment Failure Mode	-Confirming error and making action when error is occurred from GEMS payload -Convening emergency response committee in 6 hours from error occurrence							
Ground Segment Failure Mode	-Confirming error and making action when error is occurred from ground station -For example, in case of receiving failure, requesting back-up data from KARI or KIOST							

Sub-systems

Subsystem	Definition
EGS (Environment Ground Systems)	Preprocessing, processing, analyzing, archiving and distributing all products of GEMS
RF (Radio Frequency)	Receiving RAW data from antenna
PPS (Data Pre-processing System)	Producing Level1A and Level1B data through radiance correction and geometry correction
SDPS (Scientific Data Processing System)	Producing Level2 that is concentration of air pollutant from Level1B
DMS (Data Management System)	Saving and archiving all data in EGS
DAS (Data Analysis System)	Generating Level3 and value added products from Level2 and ancillary data
DVS (Data Verification System)	Analyzing the quality of all products and determining reprocessing of algorithms
CMS (Control and Monitoring System)	Monitoring and controlling each sub-system's operations, communications, security, errors and failures
E-Portal (Environment-Portal)	Performing data collection and distribution service

EGS Structure

Roadmap

		2016		20	17		2018				2019				
	~ 2015	Second half Fi		half	Secor	Second half		First half		Second half		First half		Second half	
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Alg.	Delive algorit	ery of inte hm	egrated	• Firs eva	t stage o luation	of perfor	mance	 Test Second perf 	t Operati ond stag ormance	on e of evaluat	ion	• Algo	orithm IC	от	
S/W						 Dev ope 	elopmer rational	nt of S/W	• Dev	elopmer	nt of ana	lysis S/V	V and we	ebpage	
H/W		 Use esta desi Ant 	r require blishme gn enna Cc	ement nt	• Sys • Fist Cor	stem ord stage c nstructio	ering of n	Test Secon of con	t operation od stage struction •	on IOT pre Educatio	eparation on • Lau	 LE0 IOT Reason ser 	DP - ady for c vice	lata	

Application

Improvement of Air Quality Model accuracy

- Core technology in AQF, Air Quality Model, has uncertainties
- → Correct model with satellite data and observation as a reference in real time

Application

Monitoring of long-range transported air pollutants

Monitoring of transboundary and transpacific transport of air

Continuous monitoring of air pollutants and causes of climate change

 Identifying spatio-temporal distribution and analyzing trends for air pollutants with satellite

Surface PM concentration

National Institute of Environmental Research

Estimating PM2.5 Oct

 $\begin{array}{l} MLR: Multiple \ Linear \ Regression \ Model \\ PM2.5_{ij} \ = \ \beta_{0,ij} + \beta_{1,ij} \cdot \ AOD + \beta_{2,ij} \cdot \ PBLH + \beta_{3,ij} \cdot \ f(RH) + \beta_{4,ij} \cdot \ SZA + \beta_{5,ij} \cdot \ Temp \\ + \ \beta_{6,ij} \cdot \ Wind \ Speed + \ \beta_{7,ij} \cdot \ NO_2 + \beta_{8,ij} \cdot \ O_3 \end{array}$

Surface PM concentration

- The estimated PM values are highly correlated with observed one.
- For high concentration case, the MLR results is underestimated to the observation.
- The seasonal patterns are similar, but there is also discrepancy in some months.
- The research area will be extended to megacity over East Asia.

Aerosol radiative forcing

Aerosol radiative forcing

AK uncertainty in trend estimate

$$\hat{\mathbf{x}} = \mathbf{x}_{o} + \mathbf{A}(\mathbf{x} - \mathbf{x}_{o})$$

$$\Rightarrow \frac{\partial \hat{\mathbf{x}}}{\partial t} = \frac{\partial \mathbf{x}_{o}}{\partial t} + \frac{\partial \mathbf{A}}{\partial t}(\mathbf{x} - \mathbf{x}_{o}) + \mathbf{A}(\frac{\partial \mathbf{x}}{\partial t} - \frac{\partial \mathbf{x}_{o}}{\partial t})$$

$$= \frac{\partial \mathbf{x}_{o}}{\partial t}(\mathbf{I} - \mathbf{A}) + \frac{\partial \mathbf{A}}{\partial t}(\mathbf{x} - \mathbf{x}_{o}) + \mathbf{A}\frac{\partial \mathbf{x}}{\partial t}$$

$$= \frac{\partial \mathbf{A}}{\partial t}(\mathbf{x} - \mathbf{x}_{o}) + \mathbf{A}\frac{\partial \mathbf{x}}{\partial t} \quad \because \frac{\partial \mathbf{x}_{o}}{\partial t} \approx 0$$
1. if $\mathbf{A} = \mathbf{I} \left(\frac{\partial \mathbf{A}}{\partial t} = 0 \right)$, then $\frac{\partial \hat{\mathbf{x}}}{\partial t} = \frac{\partial \mathbf{x}}{\partial t}$
2. if $\mathbf{A} \neq \mathbf{I}$, but $\frac{\partial \mathbf{A}}{\partial t} = 0$, then $\frac{\partial \hat{\mathbf{x}}}{\partial t} = \mathbf{A}\frac{\partial \mathbf{x}}{\partial t}$
3. if $\mathbf{A} \neq \mathbf{I}$ and $\frac{\partial \mathbf{A}}{\partial t} \neq 0$, then $\frac{\partial \hat{\mathbf{x}}}{\partial t} = \frac{\partial \mathbf{A}}{\partial t}(\mathbf{x} - \mathbf{x}_{o}) + \mathbf{A}\frac{\partial \mathbf{x}}{\partial t}$

 $\exists a. \mathbf{x} = 0.5 \times \mathbf{x}_{o} \text{ (i.e. } \partial \mathbf{x} / \partial t \approx 0 \text{ and } (\mathbf{x} - \mathbf{x}_{o}) < 0) \Rightarrow \frac{\partial \mathbf{x}}{\partial t} = \frac{\partial \mathbf{A}}{\partial t} (\mathbf{x} - \mathbf{x}_{o})$

3b. $\mathbf{x} = 1.5 \times \mathbf{x}_{o}$ (i.e. $\partial \mathbf{x} / \partial t \approx 0$ and $(\mathbf{x} - \mathbf{x}_{o}) > 0$) $\Rightarrow \frac{\partial \mathbf{x}}{\partial t} = \frac{\partial \mathbf{A}}{\partial t} (\mathbf{x} - \mathbf{x}_{o})$

Summary

- L0-1 and L1-2 algorithms are under the development to be ready bef ore the launch of GEMS in March 2019.
- Building will be completed by Dec. 2017 and receiving and processing systems will be installed from end of this year.
- Various application methods are currently under development for monitoring air quality, assessing radiative balance, and estimating long-term trend of air pollutions.
- Synergy with AMI and GOCI-2 will provide more reliable products of aerosol and cloud, which eventually improve the accuracy of trace gas column density.

GEMS launch

National Institute of Environmental Research

GEMS will be launched in 2019!

French launcher Ariane 5 lifts off Arabsat-5A and South Korea's COMS satellites in French Guiana one minute after the launch window opened at 6:41 p.m. Saturday local time (GMT 0941). (Xinhua/AFP Photo)

National Institute of Environmental Research

THANK YOU