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Satellite nadir measurements

Simplified representation of the UV-Vis
radiative transport in nadir viewing
geometry

In first approximation
the problem is
equivalent to treating
the attenuation of a
light ray through a gas
cell

Gas layer
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The Beer-Lambert law

Light source

\

Absorber of concentration C

Io(K)®

and cross-section O'(Z)

-

d

Cell of length L

Spectrometer
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Absorption cross-sections
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Differential Optical Absorption Spectroscopy (DOAS)

More realistic expression for the atmospheric attenuation:

Trace gases Rayleigh scattering ~ A* Mie Scattering ~ A(1---3)
v \

) = 1,(2) - e~ [Eoieit + (zrayW+emie ) 1]

— the DOAS approach (frequency separation);

I(A) =1,(A) - e([Z ag/(l).cpl, + {0pi(D) + £Rray D +epi. (D) -L]

High frequency broadband band extincti

Remove by high-pass filtering
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Exemple of DOAS frequency separation
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DOAS evaluation method
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Exemple of DOAS retrieval (NO,)
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The solar spectrum as a light source

A

Difficulties:

Multitude of solar lines
(Fraunhofer lines)

Solar lines are Doppler shifted -
must be corrected

Spectrum varies over the disk
Some variations in intensity

Advantages:

Maximum intensity in visible

Fraunhofer lines can be used as a
reference for wavelength and
resolution
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Wavelength calibration/ shift-stretch

Wavelength calibration of spectrometers usually
determined in the lab using monochromatic
emission lines of know position

For DOAS, it is essential that measured spectra
and reference laboratory cross-sections are
always perfectly aligned with each other

Misalignments may occur due to, e.g. Doppler
shift related to earth rotation, thermal
instabilities, instrument degradation, inaccuracies
in laboratory data, etc

In advanced DOAS retrievals, wavelength shift
(and stretch) are dynamically adjusted using solar
lines as reference.

Intensity

Wavelength [nm]

Pixel
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Instrument Response Function (IRF)

The Instrument Response Function IRF (often also called slit function) is the response

of the instrument to a monochromatic input:

e The IRF is usually measured pre-flight in the lab
e Its knowledge is critical for DOAS retrievals

e The IRF can be altered due to thermal instabilities
or instrument degradation

* |t may also depend on how well the entrance
aperture is illuminated (= problems with partially
cloudy skies)

* The IRF can be monitored using solar lines as
reference

Solar spectra at different resolution
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Solar |, effect

Because of the finite resolution of the DOAS spectrometers, the Fraunhofer lines
and the absorption by molecules can interfere (solar |, effect):

Real Intensity: (1) =1,(1)exp{-c(A)L} O
Measured intensity: | *(1)=F *[| o(A)exp{-c(1) L}] &
o
Measured reflectance: 1 *(4) _F *[1,(3) exp{-c (1) L}] —
1 *(2) F*1, (1)} =
Only if either I, or exp{-oL} varies slowly, they can be moved out of the integral so ©
the standard DOAS approach holds: 1%(1)
—log ~F*o(1)-L
I, (4)

=>» for strong differential absorption and close to strong solar lines a correction is
needed which can be computed by simulating the effect

@



T dependence of absorption cross-sections
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Ring effect

@

In addition to elastic Rayleigh and Mie scattering, inelastic rotational Raman
scattering on air molecules is also important in the atmosphere. Raman
scattering moves energy from the incoming wavelength to neighbouring
wavelengths and thus changes the spectral distribution in the scattered light.

As a result, the solar lines are less deep Fraunhofer filling-in

in scattered light than in direct solar LT 1 ] '
light. This was first observed by Ring & ol .
Grainger in 1962. |
The degree of “filling-in” depends on the
geometry of sun and observation,

albedo, clouds.. It amounts to a few
percent of the total scattered light.

o o o
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This smoothing effect must be corrected 30 35 40 45 50 55 60 65 7.0

] ) Wavelength [nm]
in the retrieval

aeronomie



Correction of Ring and molecular Ring effect

Use of an effective Ring cross-
section calculated using radiative
transfer calculations including
rotational Raman scattering

In addition to the Ring effect
introduced by the Fraunhofer lines,
inelastic scattering also “fills in” the
depth of trace gas absorptions
(molecular Ring effect). For a
stratospheric absorber, this can be
corrected using:
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Ring effect in O retrieval: example for one GOME-2 orbit
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Geometrical Air Mass Factor (AMF )

@

S(Z;\ - LOS
¢
-

1 1

_|_
cos(d) cos(p) Accounting for sphericity, SZA and
LOS depend on altitude with larger
values in the lowest layers

AMF, =

- clearly wrong for low sun!
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More realistic view of the UV-Vis radiative
_O_ transfer in the earth atmosphere
F N\

Absorption
Scattering from Transmission
o a cloud through a cloud
o)
Scattering

o)
o) o

° o

o)
Scattering

Aerosol / within a cloud
Molecules

Scattering / reflection

oh a cloud -
Transmission

through a cloud

Absorption on the

ground Scattering / Reflection on the ground

/)
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Radiative transfer equation

Express the variation of the diffuse radiation in height z at one wavelength:

d L.
V(2 m9) = ~(e(2) + 5 (22 1.0) loss by extinction
Z
gAf J' do’ Idﬂ’P(Z 1,0, 1,0 Nz, 1, 0) gain by multiple scattering
g( ) —2(2)/ 14 gain by single scattering of solar
4” P(Z, 1,0~ 11, 99 )Fs01© radiation
n §(Z) = e—rol,uo Zfd '}d IP(Z ' ,)Ae—(ro—r(z))/y' gain by reflection of
sol . ¢ . H DL light from the surface
F2(Z)B(T) garT by emTSSToT—
® zenith angle Fsol  flux from the sun
n  cos(®) P weighted phase function for scattering
¢ azimuth angle A surface albedo
e  emission coefficient (= absorption coefficient) B Planck radiation
C scattering coefficient T optical depth
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Optically thin approximation and concept of
effective photon path length

In a large part of the UV and visible range, the optical thickness of the
atmosphere is small and dominated by scattering (Rayleigh and Mie) and
reflection at the surface and from clouds

As a result, the radiative transfer is weakly dependent on the abundance
of minor absorbers present in the atmosphere, and also weakly
dependent on the wavelength (at least for small intervals used in DOAS)

Therefore one can define one effective photon path length which is
representative of the mean light path at one wavelength (generally the
central wavelength of the DOAS interval)

This allows to maintain a convenient separation between the DOAS
retrieval part and the treatment of the radiative transfer, which is done in
a separate step using complex radiative transfer models.

aeronomie



Air Mass Factor (AMF) definition

The AMF is defined as the ratio of the measured slant column to the vertical

column in the atmosphere:

SC(4,0,...)
VC

AMF =

The AMF expresses the sensitivity of the measurement, and depends on a variety

of parameters such as:

wavelength
geometry

vertical distribution of the species

clouds
aerosol loading
surface albedo

Because of the optically thin approximation, the AMF
depends weakly on the vertical column = the idea is
that if all other dependences are known, the
measured signal is proportional to the VC.
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AMF calculation

e AMEF are generally calculated by performing two radiative
transfer calculations, one with and one without the absorber
of interest:

*= radiance with absorber
I = radiance without absorber

—log{I=(1,60)/17(4,0) }

AMF(2,6) = D Ve

- works well for optically thin situations

aeronomie



AMF dependences

AMFs strongly depend on the altitude .
At high altitude (stratosphere), the SZA /%”"Tﬁ\
dominates the geometry

At low altitude (troposphere) scattering and
surface reflection effects dominate.

Scattering effects are increasingly dominant
at shorter wavelength (og,, ~ 1/A%). Over dark
surfaces, the sensitivity to near surface
absorbers is lowest in the UV.

In good approximation, an AMF can be —

calculated for each layer, and the total AMF is

then given by:
Z AMF, VG, The AMF, are also often called
AMF = ZVC' “Scattering Weights” or “Box AMFs”
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AMF dependences
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Surface reflectivity
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* Inthe UV-Vis region the surface reflectivity is generally low except over
snow and ice covered areas

@
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Surface reflectivity

KLEIPOOL ET AL.: OMI SURFACE REFLECTANCE CLIMATOLOGY

D18308

in percent!
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Treatment of clouds

Clouds shield surface

Clouds enhance sensitivity to absorbers
located above or at cloud altitude (due
to albedo effect) ‘

Stratospheric absorbers are weakly ‘ \
affected by clouds “‘\\\
Clouds generally treated as lambertian ‘ ‘

reflectors in the independent pixel
approximation:

[k
L
i

,,A%Wv[ﬁ'r
/// -."'“
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Trace gas layer \ \ :

AMF = (1 — ®) - AMF,1pqr + ® - AMF,;,4 VAL

Surface

_ Cf “Ieioud
(1 - Cf) ’ Iclear + Cf ’ Icloud

where @ is the cloud radiance fraction



The Averaging Kernel (AK) concept

The AK expresses the sensitivity of
the retrieval in the vertical axis, or
the way the retrieval smoothes the
actual profile information

For a DOAS retrieval:
AMF(Z)
AMF

The AK allows to account for the
measurement sensitivity when
performing a comparison with a
reference profile (x,):

AK(Z) —

‘7 =AK-xref

Of

< 200r .
= [ ]
— 400 ]
L [ : '
7 BOO" ; .
7 : _
L 5 ]
a BUO / / ' ]

1 DOO —_

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Averaging kernel

Fig. 1. Example of DOAS averaging kernels at 437 nm: (a) clear
pixel with a surface albedo of 0.02; (b) clear pixel with a surface
albedo of 0.15; (e) pixel with an optically thick cloud and cloud top
at 800 hPa.

Eskes and Boersma, ACP, 2003
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Stratosphere-troposphere separation

Reference Sector Limb Stratosphere Model Stratosphere Cloud / no cloud Penetration depth

VTV

4

Nadir UV-Vis observation do not carry information on the altitude

The slant column signal results from reflection or scattering taking place
close to the surface = slant columns contain absorption in both the
troposphere and the stratosphere

Not a problem for tropospheric gases (e.g. SO,, HCHO)

For other molecules (e.g. NO,, O,, BrO) the stratospheric content is
significant and must be removed before tropospheric retrieval
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Residual tropospheric NO, retrieval

Total NO, ’ Stratospherif NO,

o Joo S
it

4 . —
NO, Column Density [10"°molec./cm]

I ©
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Residual tropospheric BrO

GOME 2 - 16 Feb 2008 GOME 2 - 16 Feb 2008 GOME 2 - 16 Feb 2008
BrO total VCD (geom.) BrO stratospheric VCD BrO total minus strato VCD

0.5

[molec/cm?]

Stratospheric column derived from a
climatology build on CTM simulations

Theys et al., ACP, 2011



Limits of the DOAS approximation

The main limitation is related to the
variation of the AMF with wavelength:

e in the presence of strong absorbers
(O;, O,, H,0), the photon light path is
affected by the absorber itself, leading
to inaccuracies resulting from the
change of airmass factor with
wavelength

* in the case of (non-linear)
temperature or pressure dependent
cross-sections an additional error is
introduced

@
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Beyond DOAS: (1) Total ozone direct-fitting

 Use aradiative transport model as forward model and directly fit measured reflectances
e Better accuracy, especially for low sun conditions

DOAS Direct-fitting
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Differential optical density
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Beyond DOAS: (2) SO, plume height retrieval

For large SO, and ozone absorptions in the UV, the ,
wavelength dependence of the SO, AMF becomes a 1ok
strong function of the altitude '

This can be used to retrieve an information on the 0.8
altitude of strong SO, volcanic plumes

z (km)
1 w34
32.
30.
28.
26.
24,
22,
200,

0.6

m'/m

0.4
0.2}

00k=

0.12F
010
0.08 |
006
0.04

(dm'/dz)/m

002
0.00 F

Yang et al., JGR, 2010



Beyond DOAS: (3) surface NO, identification

In case of large surface NO, absorptions,
the AMF becomes of strong function of
the wavelength even in small intervals

This can be used to identify hot spots of
NO, emitted at the surface. This
technique is under development in
Bremen
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Richter, DOAS workshop, 2013
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Thank you for your attention

Questions?
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