Status of GEMS Cloud Algorithm

Ewha Womans University

Yong-Sang Choi, Min-Jae Kwon and Gyuyeon Kim

Theoretical Background (O₂-O₂ absorption band)

Absorption is caused by collision between two O₂ molecules.

The feature of the absorption is stable.

The O_2 - O_2 absorption band is sensitive to cloud pressure in GEMS region.

Theoretical Background (DOAS method)

 $-lnR_{\lambda} = C_1 + C_2 * \lambda + N_{s,O_2-O_2} * \sigma_{O_2-O_2} + N_{s,O_3} * \sigma_{O_3}$

Theoretical Background (Temperature correction factor)

Cloud algorithm considering temperature profile

$$\gamma = \frac{N_s^{ref}}{N_s^{meas}} = \frac{\int_{p_{cld}}^{p_{TOA}} m(p,\lambda) \frac{p}{T_{ref}(p)} dp}{\int_{p_{cld}}^{p_{TOA}} m(p,\lambda) \frac{p}{T(p)} dp}$$

Pepjin et al., 2016

γ: Temperature correction factor N_s: Slant column density m(p, λ): O₂-O₂ air mass factor

10

MAR JUN SEP DEC

260

280

GEMS Cloud Products (Validation)

Validation with OMI

MAR		Slope	Y-intercept	Correlation	Mean Bias
	Goal	0.9-1.1	-	0.9	< 0.05
	ECF	0.98	0.02	1.00	0.01

JUN		Slope	Y-intercept	Correlation	Mean Bias
	ECF	0.96	0.00	1.00	-0.01

SEP		Slope	Y-intercept	Correlation	Mean Bias
0 = .	ECF	0.97	0.01	1.00	0.00

DEC		Slope	Y-intercept	Correlation	Mean Bias
	ECF	0.99	0.02	1.00	0.01

0.0

0.2

0.4

0.6

8.0

1.0

Effective cloud fraction 2007/06/21

Effective cloud fraction 2007/12/21

GEMS Cloud Products (Validation)

Validation with OMI

MAR		Slope	Y-intercept	Correlation	Mean Bias
	GOAL	0.9–1.1	-	0.8	< 100
	ССР	0.74	125.92	0.76	-50.45
	CCP (ECF>0.2)	0.94	0.53	0.97	-34.56

JUN		Slope	Y-intercept	Correlation	Mean Bias
	ССР	0.76	86.32	0.79	-54.74
	CCP (ECF>0.2)	0.97	-22.49	0.97	-38.56

SEP		Slope	Y-intercept	Correlation	Mean Bias
	ССР	0.72	118.15	0.77	-58.50
	CCP (ECF>0.2)	0.92	7.75	0.96	-34.39

DEC		Slope	Y-intercept	Correlation	Mean Bias
	ССР	0.77	106.79	0.80	-53.90
	CCP (ECF>0.2)	0.96	-9.18	0.97	-33.50

Cloud centroid pressure 2007/03/23

Cloud centroid pressure 2007/06/21

Sensitivity Tests to Input Data (Surface pressure)

MAR

JUN

Regional Surface Pressure

Difference

Sensitivity Tests to Input Data (Surface pressure)

Regional Surface Pressure

50 40 30 20 10 10 60 80 100 120 140 160 100.0 282.6 465.2 647.8 830.4 1013.0

Difference

SEP

DEC

Sensitivity Tests to Input Data (Reflectance error analysis)

Sensitivity Tests to Input Data (Reflectance error analysis)

- In operation, if SCD is beyond the valid range of LUT, the retrieval proceeds as follows.
 - > ECF is retrieved using continuum reflectance
 - > ECP is assumed as 500 hPa or certain climatological value
 - > At nighttime,
 - → Radiance is reproduced after polarization correction
 - \rightarrow Final product of cloud is retrieved using corrected radiance data.

Sensitivity Tests to Input Data (Temperature profile)

Seasonal Temperature Profile 200 400 Pressure 600 800 1000 280 200 220 240 260 300 Temperature

 LUT test in consideration of seasonal temperature profile

- Based on the monthly temperature profile used in proxy data, theoretical temperature correction factor is calculated.
- For winter cases, temperature correction factor 0.9 is applied.

Seasonal Temperature Correction Factor

Sensitivity Tests to Input Data (Temperature profile)

Before Correction

Difference (before – after)

Thank You