GEMS Polarization Correction

Kwang-Mog Lee¹, Haklim Choi¹, Ukkyo Jeong^{2,3}, Xiong Liu⁴, Heesung Chong⁵, Jhoon Kim⁵, Gonzalo Gonzalez Abad⁴, Chris Miller⁴, Kelly Chance⁴

¹Kyung-pook National University
²Earth System Science Interdisciplinary Center, University of Maryland
³NASA Goddard Flight Space Center
⁴Harvard Smithonian Center for Astrophysics
⁵Yonsei University

Background

- Sunlight is polarized when reflected from the earth-atmosphere system.
- Radiometric response of an instrument depends on the polarization of the incoming light (Schutgens and Stammes, 2003).
- To reduce the instrument polarization sensitivity, two methods are used.
 - Depolarization method
 - destroys the polarization information by scrambling
 - used by TROPOMI, OMI, TOMS, SBUV
 - Polarization characterization method
 - characterizes instrument polarization sensitivity and atmospheric polarization
 - used by GOME, GOME-2, SCIAMACHY

Background

- Some instruments measure the state of polarization primarily for the purpose of improving their radiometric calibration.
 - GOME (Burrows et al., 1999)
 - SCIAMACHY (Bovensmann et al., 1999)
 - GOME-2 (Callies et al., 2000)
- GEMS does not have a sensor that observes polarization state.
 - GEMS will use a polarization correction algorithm based on RTM simulation results.
 - Enables a more accurate retrieval of atmospheric properties and constituents.

GEMS Polarization Ground Test

- A wire-grid polarizer is placed in the illumination path.
- The polarizer rotates from 0° to 725°.
 (5° interval)
- LPS (Linear Polarization Sensitivity) and PA (Polarization Axis) are derived.

$$LPS = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

The model results (LPS ratio, from BATC) are applied to LPS and PA at the center of N/S and E/W scan mirror positions.

Calibration Test Station (CATS)

GEMS Linear Polarization Sensitivity

User Requirements

- ✤ Less than 2 %.
- ***** No inflection point within 20 nm wavelength range.
- * Considerable changes of LPS and PA were reported.
- * Requirements are not satisfied in some regions.

Flow Chart

Polarization Correction Algorithm

Polarization Correction Algorithm (Sun and Xiong, 2007)

instrument Atmosphere

$$I' = hI\{1 + facos[2(\phi - \chi)]\}$$

Polarization Correction Term

I': GEMS L1B (Mesarused)
h: Transmittance (Radiometric calibration coefficient; assume to 1)
I: True Intensity (Corrected L1B)
a: Degree of (linear) polarization
χ: Polarization Axis
φ: Angle of polarization w.r.t. instrument reference plane
f: Linear Polarization Sensitivity (GEMS Polarization Factor)

Polarization Angle

$$\chi_{LMP} = \frac{1}{2}\arctan\left(\frac{U}{Q}\right)$$

$$\Delta \chi = tan^{-1} \left[\frac{sin\theta}{cos\theta sin(\Delta \phi)} \right]$$

$$\chi_{IRP} = \chi_{LMP} + \Delta \chi$$

 χ_{LMP} : Angle of polarization w.r.t. Local Meridian Plane (LMP); calculated by VLIDORT χ_{IRP} : Angle of polarization w.r.t. Instrument Reference Plane (IRP) $\Delta \chi$: Difference of polarization angles for IRP and LMP θ : Latitude of ground location $\Delta \phi$: Diffrence of Longitude between Satellite and ground location

Look–Up Table

- Atmospheric Stokes Parameters(I, Q, U) are calculated using VLIDORT as a function of SZA, VZA, RAA, Albedo, Surface pressure, and ozone.
 - US76 standard atmosphere with O₃, NO₂, SO₂, HCHO, O₂-O₂
 - Ozone Profiles are based on TOMS V8 climatology
 - Rayleigh scattering

Parameter	Nodes
Spectral Resolution [nm]	Δ0.2(300~500)
SZA [degree] (10)	0.1, 10, 20 , 30 <mark>, 40, 50</mark> , 60, 70, 80 , 89.9
VZA [degree] (10)	0.1, 10, 20 , 30 <mark>, 40, 50</mark> , 60, 70, 80 , 89.9
RAA [degree] (11)	0.1, <mark>5</mark> , 30, <mark>45</mark> , 60, 90, 120, <mark>135</mark> , 150, <mark>175</mark> , 179.9
ALBEDO (5)	0.01, 0.05, 0.10, 0.50, 0.99
Surface pressure [hPa] (12)	1013, 900, 800, 700, 500, 300, <mark>200</mark>
Ozone profiles [DU] (21) 0 ~ 30(L), 30 ~ 60(M)	M175,M225, M275, M325, M375, M425, M475,M525, M575 L225, L275, L325, L375, L425, L475

Polarization Error Sensitivity

Verify RTM simulation (w/ GOME - 2 PMD)

- Simulation of stokes fraction(Q/I) for Rayleigh atmosphere.
- Observation and RTM simulation are in good agreement.
- Large differences are observed in the cloud pixels.
- Polarization correction for clouds might reduce error.

Test for Synthetic Data

- * Generated GEMS data (I_{obs}) from RTM simulation data (I_{true}) by adding the instrument polarization sensitivity.
- The GEMS polarization correction algorithm using LUT was applied to get corrected radiance (*I_{pol_cor}*).

Comparison of RTM and LUT

Solar Zenith Angle

Viewing Zenith Angle

Relative Azimuth Angle

Sun

Normalized Radiance

0

The relative difference between I and I' depends on the observation geometry (SZA, VZA, RAA) and wavelength.

Relative Difference [%]

- The shape of the relative difference depends on the LPS and PA as well as SZA, VZA, ... etc.
- In these pixels, the relative difference is up to 0.4 %.

LAT :

LON :

350

0.4

0.2

0.0

-0.2

-0.4

_∩

300

Relative Difference [%]

Effects of Polarization Correction

Before : (lobs – ltrue)/ ltrue After : (lpol_cor – ltrue)/ ltrue

IOT and Future Plan

- Verification of Polarization Correction during IOT
 - Comparison of GEMS data with RTM simulation for target scenes with known meteorological and chemical field (e.g. clear, desert, ocean and opaque convection cloud)
 - Inter-comparison with other satellites (e.g. TROPOMI, Sentinel-5 and etc.)
- Optimization of algorithm (Accuracy and Speed)
 - Improve Look-Up Tables
 - Correction for cloud scenes

Conclusion

- Polarization characteristics of atmosphere were pre-simulated using RTM for GEMS polarization correction.
- Polarization error depends on the observation geometry, trace gases, surface information, and etc.
- Improve accuracy of GEMS L1B data through polarization correction, incorporating instrument polarization characteristics.
- During the IOT period, we will evaluate and optimize the polarization correction algorithm.

Thank you ~