Explicit and Observation-based Aerosol Treatment in Tropospheric Retrieval of NO₂ and Other Tracers

Mengyao Liu, PKU ACM Group

in collaboration with

J.-T. Lin, K.F. Boersma, G. Pinardi, Y. Wang, J. Chimot, H. Eskes

Supported by NSFC, 973 program and FP7 QA4ECV project

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Retrieving Tropospheric NO₂ Vertical Column Density

Step 1: SCD from DOAS calc.

Step 2: Tropospheric and stratospheric SCD

Step 3: Tropospheric AMF – *error pool*

SCD = F(radiance)
SCD_T = SCD - SCD_S
VCD_T = SCD_T / AMF

Satellite NO₂ VCD Have High Bias in Aerosol-Polluted Areas

Aerosol Treatment is Critical over China

Characteristics of Chinese aerosols:

- Large amounts in key areas
- Highly absorbing in many areas
- (Lin and Liu et al., 2015, ACP)
- Considerable spatiotemporal variability

Issues in current NO₂ products & improvements of POMINO:

Not fully accounting for aerosol optical effects (implicit aerosol treatment)
 Daily aerosols info from GEOS-Chem, with AOD adjusted by monthly MODIS AOD

No geometric dependence of surface reflectance

> Account for surface reflectance anisotropy (BRDF; daily MCD43C2 collection 5 (0.05°)

- Coarse-resolution NO₂ profile (200 km)
- High-resolution NO₂ profile (25–50 km)

Inconsistent ancillary assumptions between NO₂ and cloud products
 Consistent ancillary assumptions in retrieving NO₂ and clouds

Use of look-up table, often with insufficient layers affecting interpolation/extrapolation
 Parallelized RTM calc. for each pixel

Aerosols Complexly Affect Cloud Retrieval

Cloud Fraction Cloud Pressure Cloud Radiance Fraction AOD With Aerosols (POMINO) 0.2 0.4 0.6 0 0.8 1.0 1.2 SSA 0.05±0.06 Without Aerosols 0.80 0.84 1100 hPa 0 5 10 15 20 25 30 35 40 45 50 x 0.01 0.88 100 300 500 700 0.92 0.96 1.00 900 10 20 40

Lin and Liu et al., 2015, ACP

Explicit Aerosol Treatment Reduces Sampling Low Bias

Days per month w/ valid data in POMINO

An explicit treatment better accounts for high-pollution days

Lin and Liu et al., 2015, ACP

POMINO Better Captures NO₂ Day-to-day Variability

Evaluation of OMI NO₂ data using MAX-DOAS NO₂ (daily data; multiple years and seasons; data normalized to mean)

Lin et al., 2014 ACP

POMINO Underestimates MAX-DOAS

Using CALIOP Aerosol Profiles to Improve Cloud and NO₂ Retrievals

CALIOP Global Coverage: 16 day ~0.2% land coverage

Pastime of CALIPSO : 45 sec. later than Aqua

Spatial resolution of CALIOP

Altitude (km)	Horizontal res. at 532nm (m)	Vertical res. at 532nm (m)
-2.0 ~ -0.5	330	300
-0.5 ~ 8.2	330	30
8.2 ~ 20.2	1000	60
20.2 ~ 30.1	1670	180
30.1 ~ 40.0	5000	300

Model Captures Spatiotemporal Variation in Aerosol Layer Height

(a) All-sky Level-2 CALIOP based climatlology

Horizontal res.: 0.5° lat. X 0.667 ° lon.

Vertical res: 36 layers in troposphere

h(l)-height above the ground $\sigma(l)$ -extinction of layer l

(b) correspondent GEOS-Chem simulation based climatiology

0.0

0.4

0.7

ALH (km)

2.5

2.1

(c) NASA all-sky monthly Level-3 CALIOP based climatlology

1.1

1.4

1.8

Horizontal res.: 2 ° lat. X 5 ° lon.

Vertical res: 50 m; from -0.2~80km

GEOS-Chem Underestimates CALIOP Aerosol Layer Height

Negative (Positive) Bias in Aerosol Extinction Gradient Below (Above) 0.6 km

Absolute aerosol extinction profile over NEC Aerosol extinction profile standardized by maxima of the profile

Use CALIOP Monthly Climatology (2007–2015) to Constrain Model

POMINO v1.1 Increase NO₂ VCD by ~15% Averaged over East China

Cloud Top Height Decreases to Compensate for Increased Aerosol Layer

➢ Nonlinear compensation between ∆ALH and ∆CTH
 ➢ Improved aerosol layer height is above cloud top in fall and winter

China has Frequent Above-cloud Absorbing Aerosol Events

Above-cloud Abs. Aerosol frequency (2005-2014) derived from OMI's near-UV observations

Comparisons to the MAX-DOAS measurements

http://www.phy.pku.edu.cn/~acm/acmProduct.php

POMINO v1.1

POMINO v1.1 Decrease Low Bias

Daily OMI Retrievals .vs. MAX-DOAS at 3 Stations

POMINO v1.1 performance better in Haze Days

OMI retrievals versus MAX-DOAS on haze days (27 samples)

Product	POMINO v1.1	POMINO	DOMINO
slope	1.07	0.80	1.11
intercept	-3.58	1.76	-11.79
R ²	0.76	0.68	0.38
NMB (%)	4.4	-9.4	-5.0

**haze day ---- selected by checking ground metrological weather records and corrected reflectance of MODIS/Aqua

Summary

- > Including daily aerosol information better captures day-to-day variation of NO₂ VCD
- > Explicit aerosol treatment increases the number of valid days, reducing sampling bias
- Using CALIOP climatological aerosol extinction profile to adjust model leads to more realistic relationship between cloud and aerosols
- > POMINO v1.1 reduces the low bias in POMINO
- \geq POMINO v1.1 algorithm can be applied to retrievals of SO₂, HCHO and other tracers.

Reference

Lin, J.-T., Liu, M.-Y., Xin, J.-Y., Boersma, K. F., Spurr, R., Martin, R., and Zhang, Q.: Influence of aerosols and surface reflectance on satellite NO_2 retrieval: seasonal and spatial characteristics and implications for NO_x emission constraints, Atmos. Chem. Phys., 15, 11217-11241, https://doi.org/10.5194/acp-15-11217-2015, 2015.

Lin, J.-T., Martin, R. V., Boersma, K. F., Sneep, M., Stammes, P., Spurr, R., Wang, P., Van Roozendael, M., Clémer, K., and Irie, H.: Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide, Atmos. Chem. Phys., 14, 1441-1461, https://doi.org/10.5194/acp-14-1441-2014, 2014.